分析 (1)设出圆心C的坐标为(a,0),半径为r,根据圆C与y=-x+2$\sqrt{2}$相切,被直线y=x截得的弦长为4$\sqrt{2}$,利用点到直线的距离公式表示出圆心C到直线y=x的距离d,根据弦长的一半,弦心距d及圆的半径r构成直角三角形,利用勾股定理列出关于a的方程,求出方程的解得到a的值,进而得到a与半径的值,写出圆C的方程即可.
(2)直线l的方程为y=k(x+1),联立直线与圆的方程,利用根的判别式、韦达定理、向量的数量积能求解即可.
解答 解:(1)设圆C的标准方程为(x-a)2+y2=r2,
此时圆心坐标为(a,0),半径为r,
圆C与直线y=-x+2$\sqrt{2}$相切,∴r=$\frac{|-a+2\sqrt{2}|}{\sqrt{2}}$…①,
该圆被直线y=x截得的弦长为4$\sqrt{2}$.
∵圆心C到直线y=x的距离d=$\frac{|a|}{\sqrt{2}}$,弦长的一半为$2\sqrt{2}$,
∴根据勾股定理得:$\frac{{a}^{2}}{2}$+8=r2,…②,
解①②得a=-$\sqrt{2}$,r=3.
圆C的标准方程为(x+$\sqrt{2}$)2+y2=9.
(2)(2)直线l的方程为y=k(x+1),
联立$\left\{\begin{array}{l}{y=kx+k}\\{(x+\sqrt{2})^{2}+{y}^{2}=9}\end{array}\right.$,
得(k2+1)x2+(2k2+2$\sqrt{2}$)x+k2-7=0,
直线l与圆C交于A,B两点,
△=(2k2+2$\sqrt{2}$)2-4(k2+1)(k2-7)=8$\sqrt{2}$k2+24k2+36>0恒成立…(8分)
设A(x1,y1),B(x2,y2),则x1+x2=-$\frac{2\sqrt{2}+2{k}^{2}}{{k}^{2}+1}$,x1x2=$\frac{{k}^{2}-7}{{k}^{2}+1}$,
则y1y2=k2(x1+1)(x2+1)=k2[x1x2+(x1+x2)+1],
∴$\frac{{y}_{1}{y}_{2}}{{x}_{1}{x}_{2}}$=1+$\frac{\frac{-2\sqrt{2}-2{k}^{2}}{{k}^{2}+1}+1}{\frac{{k}^{2}-7}{{k}^{2}+1}}$=$\frac{-2\sqrt{2}-6}{{k}^{2}-7}$=-(3+$\sqrt{2}$)k2,
故k2=9…(10分)
则x1x2═$\frac{1}{5}$,x1+x2═$\frac{-9-\sqrt{2}}{5}$,y1y2=9×($\frac{1}{5}$+$\frac{-9-\sqrt{2}}{5}$+1)=-$\frac{27+9\sqrt{2}}{5}$,
故$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1x2+y1y2=-$\frac{26+9\sqrt{2}}{5}$.…(12分)
点评 (1)考查了直线与圆相交的性质,涉及的知识有:圆的标准方程,点到直线的距离公式,垂径定理及勾股定理,当直线与圆相交时,常常利用弦长的一半,弦心距及圆的半径构造直角三角形,利用勾股定理来解决问题.(2)考查圆的方程的求法,考查向量的数量积的求法,是中档题,解题时要认真审题,注意根的判别式、韦达定理、向量的数量积公式的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{4}{5}$ | C. | $\frac{5}{4}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com