| A. | 3 | B. | 11 | C. | $\frac{17}{7}$ | D. | $\frac{15}{7}$ |
分析 作出不等式组对应的平面区域,利用目标函数的几何意义,求目标函数z=x+y的最小值.
解答
解:作出不等式组$\left\{\begin{array}{l}x-y+3≥0\\ 2x-y-1≤0\\ 3x+2y-6≥0\end{array}\right.$,对应的平面区域如图:(阴影部分ABC).
由z=x+y得y=-x+z,平移直线y=-x+z,
由图象可知当直线y=-x+z经过点A时,
直线y=-x+z的截距最小,此时z最小.
由$\left\{\begin{array}{l}{2x-y-1=0}\\{3x+2y-6=0}\end{array}\right.$,解得A($\frac{8}{7}$,$\frac{9}{7}$),
代入目标函数z=x+y得z=$\frac{17}{7}$.
即目标函数z=x+y的最小值为$\frac{17}{7}$.
故选:C.
点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ${a_n}={n^2}-({n-1})$ | B. | ${a_n}={n^2}-1$ | C. | ${a_n}=\frac{{n({n+1})}}{2}$ | D. | ${a_n}={n^2}+1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-3,0) | B. | (-2,0) | C. | (-3,-2) | D. | (0,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({\frac{4}{e^2},+∞})$ | B. | $({0,\frac{4}{e^2}})$ | C. | (0,4e2) | D. | (0,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| 年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
| 年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | a | 5.2 | 5.9 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com