精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=2sin(2x+$\frac{π}{6}$)-1(x∈R).
(1)求函数y=f(x)的单调递增区间;
(2)若x∈[-$\frac{5π}{12}$,$\frac{π}{3}$],求f(x)的取值范围.

分析 (1)由条件利用正弦函数的单调性求得函数y=f(x)的单调递增区间.
(2)由x∈[-$\frac{5π}{12}$,$\frac{π}{3}$],利用正弦函数的定义域和值域 求得f(x)的取值范围.

解答 解:(1)对于函数f(x)=2sin(2x+$\frac{π}{6}$)-1(x∈R),令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈z,
求得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,可得函数y=f(x)的单调递增区间为[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈z.
(2)若x∈[-$\frac{5π}{12}$,$\frac{π}{3}$],则2x+$\frac{π}{6}$∈[-$\frac{2π}{3}$,$\frac{5π}{6}$],∴sin(2x+$\frac{π}{6}$)∈[-1,1],
f(x)=2sin(2x+$\frac{π}{6}$)-1∈[-3,1],
即f(x)的值域为[-3,1].

点评 本题主要考查正弦函数的定义域和值域,正弦函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$,求证:对于任意不小于3的正整数n,都有f(n)$>\frac{n}{n+1}$成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.将函数y=$\frac{1}{2}$cos(2x-$\frac{π}{3}$)图象上各点向左平移$\frac{π}{6}$个单位长度,得到函数y=g(x)的图象,求g(x)在[-$\frac{π}{4},\frac{2π}{3}$]上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知点A(1,1)、B(3,5)到直线l距离均为1,直线l的方程是x=2;y=2x-1±$\sqrt{5}$;2x-y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知抛物线C:y2=4x与直线y=2x+k相交于A、B两点,且|AB|=$\sqrt{15}$.
(1)求k的值;
(2)在抛物线C上是否存在动点P使得△ABP的重心恰为抛物线C的焦点F,若存在,求出动点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知数列{an}满足:a1=$\frac{1}{2}$,an+1=an2+an,用[x]表示不超过x的最大整数,则$[{\frac{1}{{{a_1}+1}}+\frac{1}{{{a_2}+1}}+…+\frac{1}{{{a_{2014}}+1}}}]$的值等于(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知x>y>0,log3($\frac{x-y}{2}$)2=log3(xy),则log3($\sqrt{\frac{x}{y}}$-$\sqrt{2}$)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知抛物线C的顶点在原点,焦点在x轴的正半轴,直线y=-4x+1被抛物线C所截得的弦AB的中点M横坐标为$\frac{3}{8}$.
(1)求抛物线C的方程;
(2)证明:存在顶点M0,使过M0的动直线与抛物线C交于P,Q两点,且以PQ为直径的圆过原点.
(3)过满足(2)条件的点M0的直线l与抛物线C分别交于A,B两点.若$\overrightarrow{A{M}_{0}}$=$\frac{1}{2}$$\overrightarrow{{M}_{0}B}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列说法正确的是(  )
A.?x∈R,x2>0
B.?x0∈R,x02-x0+1≤0
C.“a>b”是“ac2>bc2”的充分条件
D.△ABC为等边三角形的充要条件是a2+b2+c2=ab+bc+ac

查看答案和解析>>

同步练习册答案