精英家教网 > 高中数学 > 题目详情
14.已知数列{an}满足an≠0,a1=$\frac{1}{3}$,an-1-an=2an•an-1(n≥2,n∈N*).
(1)求证:$({\frac{1}{a_n}})$是等差数列;
(2)比较an与$\frac{1}{4n(n+1)}$的大小关系;
(3)利用(2)证明:a12+a22+…+an2<$\frac{1}{4}$.

分析 (1)由an-1-an=2an•an-1(n≥2,n∈N*),变形为$\frac{1}{{a}_{n}}-\frac{1}{{a}_{n-1}}$=2,利用等差数列的通项公式即可得出;
(2)由(1)可得:an=$\frac{1}{2n+1}$.作差an-$\frac{1}{4n(n+1)}$即可比较出大小;
(3)由an=$\frac{1}{2n+1}$,由${a}_{n}^{2}$=$\frac{1}{4{n}^{2}+4n+1}$<$\frac{1}{4{n}^{2}+4n}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$,利用“裂项求和”、“放缩法”即可证明.

解答 (1)证明:∵an-1-an=2an•an-1(n≥2,n∈N*),
∴$\frac{1}{{a}_{n}}-\frac{1}{{a}_{n-1}}$=2,∴$\{\frac{1}{{a}_{n}}\}$是等差数列,首项为3,公差为2;
(2)解:由(1)可得:$\frac{1}{{a}_{n}}$=3+2(n-1)=2n+1,
∴an=$\frac{1}{2n+1}$.
∴an-$\frac{1}{4n(n+1)}$=$\frac{1}{2n+1}$-$\frac{1}{4n(n+1)}$=$\frac{4n(n+1)-(2n+1)}{4n(n+1)(2n+1)}$=$\frac{4{n}^{2}+2n-1}{4n(n+1)(2n+1)}$>0,
∴an>$\frac{1}{4n(n+1)}$.
(3)证明:∵an=$\frac{1}{2n+1}$,∴${a}_{n}^{2}$=$\frac{1}{(2n+1)^{2}}$=$\frac{1}{4{n}^{2}+4n+1}$<$\frac{1}{4{n}^{2}+4n}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$,
∴a12+a22+…+an2<$\frac{1}{4}[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$=$\frac{1}{4}(1-\frac{1}{n+1})$$<\frac{1}{4}$.
∴a12+a22+…+an2<$\frac{1}{4}$.

点评 本题考查了等差数列的通项公式、递推式的应用、“裂项求和”方法、“放缩法”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.盒子中分别有红球3个、白球2个、黑球1个,共6个球,从中任意取出两个球,则与事件“至少有一个白球”互斥而不对立的事件是(  )
A.都是白球B.至少有一个红球C.至少有一个黑球D.红、黑球各一个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.将正整数1,2,3,4,5随机分成甲乙两组,使得每组至少有一个数,则每组中各数之和是3的倍数的概率是(  )
A.$\frac{2}{21}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某同学想要作一个三边上的高分别为15、21、35的三角形,则下列说法正确的是(  )
A.可以做出这样的三角形,且最大内角为$\frac{5π}{6}$
B.可以做出这样的三角形,且最大内角为$\frac{3π}{4}$
C.可以做出这样的三角形,且最大内角为$\frac{2π}{3}$
D.不可能做出这样的三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=cos(-$\frac{x}{2}$)+sin($π-\frac{x}{2}$),x∈R
(1)求函数f(x)的最小正周期与最大值
(2)求函数f(x)在[0,π)上单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等差数列{an}的前n项和为Sn,且a2=-5,S5=-20.
(1)求数列{an}的通项公式;
(2)求Sn取得最小值时n的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知P(B)>0,A1A2=∅,则下列式子成立的是(  )
①P(A1|B)>0②P(A1∪A2|B)=P(A1|B)+P(A2|B)③P(A1$\overrightarrow{{A}_{2}}$|B)≠0④P($\overline{{A}_{1}{A}_{2}}$|B)=1.
A.①②③④B.C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的两个焦点F1,F2,点M在椭圆上,且MF1⊥F1F2,|MF1|=$\frac{4}{3}$,|MF2|=$\frac{14}{3}$,则离心率e等于(  )
A.$\frac{{\sqrt{5}}}{8}$B.$\frac{{\sqrt{5}}}{6}$C.$\frac{{\sqrt{5}}}{3}$D.$\frac{{\sqrt{5}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.曲线y=lnx在点A(e,1)处的切线斜率为 (  )
A.1B.2C.$\frac{1}{e}$D.e

查看答案和解析>>

同步练习册答案