精英家教网 > 高中数学 > 题目详情
6.已知P(B)>0,A1A2=∅,则下列式子成立的是(  )
①P(A1|B)>0②P(A1∪A2|B)=P(A1|B)+P(A2|B)③P(A1$\overrightarrow{{A}_{2}}$|B)≠0④P($\overline{{A}_{1}{A}_{2}}$|B)=1.
A.①②③④B.C.②③D.②④

分析 先根据条件得到事件A1与A2互斥,再根据条件概率的性质即可判断.

解答 解:∵P(B)>0,A1A2=∅,
∴事件A1与A2互斥,
由条件概率的性质可知,①P(A1|B)≥0②P(A1∪A2|B)=P(A1|B)+P(A2|B)③P(A1$\overrightarrow{{A}_{2}}$|B)≥0④P($\overline{{A}_{1}{A}_{2}}$|B)≥0,
故②正确,其它错误,
故选:B.

点评 本题考查了条件概率的性质和互斥事件,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.阅读如图所示的程序框图,输出S的值是(  )
A.0B.$\sqrt{3}$C.-$\sqrt{3}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1上有两点P,Q,O为原点,连OP,OQ,P,Q中点为M,OP,OQ的斜率之积为-$\frac{1}{4}$.
(1)求点M的轨迹E的方程.
(2)点A(2$\sqrt{2}$,0)过点A作直线AB,AC交曲线E于B,C点,若AB⊥AC,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}满足an≠0,a1=$\frac{1}{3}$,an-1-an=2an•an-1(n≥2,n∈N*).
(1)求证:$({\frac{1}{a_n}})$是等差数列;
(2)比较an与$\frac{1}{4n(n+1)}$的大小关系;
(3)利用(2)证明:a12+a22+…+an2<$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在长方体ABCD-A1B1C1D1中,AD=AA1=3,AB=$\sqrt{6}$,E,F分别为AB,AD1的中点.求证:AF∥A1EC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若ex>ln(x+m)(其中x∈R且x>-m),证明:m<$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.点P在正方体ABCD-A1B1C1D1的面对角线BC1上运动,则下列四个命题:
①三棱锥A1-D1DP的体积不变;  
②A1P∥平面ACD1
③DP⊥BC1;  
④平面A1PB⊥平面PDB1
其中正确的命题的序号是(  )
A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.方程lgx-4+x=0的根一定位于区间(  )
A.(5,6)B.(3,4)C.(2,3)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,在Rt△ABC中,AB=4,AC=3,∠CAB=90°,以点B为一个焦点作一个椭圆,使这个椭圆的另一个焦点在AC边上,且这个椭圆过A、C两点,则椭圆的离心率为(  )
A.$\frac{\sqrt{5}}{3}$B.$\frac{2\sqrt{5}}{3}$C.$\frac{2\sqrt{5}}{5}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案