| A. | $\frac{\sqrt{5}}{3}$ | B. | $\frac{2\sqrt{5}}{3}$ | C. | $\frac{2\sqrt{5}}{5}$ | D. | $\frac{1}{2}$ |
分析 通过记另一个焦点为D,易得△ABD也是直角三角形,利用勾股定理及椭圆定义可得a=3、c=$\sqrt{5}$,进而可得结论.
解答
解:如图,记另一个焦点为D,则△ABD也是直角三角形.
∵AB=4,AC=3,∠CAB=90°,
∴BC=$\sqrt{A{B}^{2}+A{C}^{2}}$=$\sqrt{{4}^{2}+{3}^{2}}$=5,
由椭圆定义可知:AB+AD=CB+CD=$\frac{1}{2}$(AB+BC+CA)=$\frac{1}{2}(3+4+5)$=6,
∴椭圆的长轴长2a=6,∴a=3,
设椭圆的焦距为2c,即BD=2c,
由椭圆定义可知:AD=2a-AB=6-4=2,
又∵AD=$\sqrt{B{D}^{2}-A{B}^{2}}$=$\sqrt{(2c)^{2}-{4}^{2}}$,
∴2=$\sqrt{(2c)^{2}-{4}^{2}}$,解得c=$\sqrt{5}$,
∴离心率e=$\frac{c}{a}$=$\frac{\sqrt{5}}{3}$,
故选:A.
点评 本题考查求椭圆的离心率,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | ①②③④ | B. | ② | C. | ②③ | D. | ②④ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{ln2}{2}$,$\frac{1}{e}$) | B. | ($\frac{ln2}{8}$,$\frac{1}{4e}$) | C. | ($\frac{ln2}{8}$,$\frac{1}{2e}$) | D. | ($\frac{ln2}{8}$,$\frac{ln2}{4}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{{2\sqrt{5}}}{5}$ | D. | $\frac{{4\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 1或±$\sqrt{3}$ | C. | ±$\sqrt{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com