精英家教网 > 高中数学 > 题目详情
13.如图,F是抛物线E:y2=2px(p>0)的焦点,A是抛物线E上任意一点.现给出下列四个结论:
①以线段AF为直径的圆必与y轴相切;②当点A为坐标原点时,|AF|为最短;
③若点B是抛物线E上异于点A的一点,则当直线AB(AB≥2P)过焦点F时,|AF|+|BF|取得最小值;
④点B、C是抛物线E上异于点A的不同两点,若|AF|、|BF|、|CF|成等差数列,则点A、B、C的横坐标亦成等差数列.其中正确结论的个数是(  )
A.1个B.2个C.3个D.4个

分析 ①设A的坐标,求出圆心坐标,可得圆心到y轴的距离,圆的半径,即可判断以线段FA为直径的圆与y轴相切;
②利用抛物线的定义得出|AF|=|x+$\frac{p}{2}$|,从而可得当点A为坐标原点时,|AF|为最短;
③设A(x1,y1),B(x2,y2),则|AF|+|BF|=x1+x2+p,A、B关于x轴对称时,|AF|+|BF|取得最小值;
④设点A、B、C的横坐标,利用|AF|、|BF|、|CF|成等差数列,根据抛物线的定义,即可得到结论.

解答 解:①由已知抛物线y2=-2px(p>0)的焦点F(-$\frac{p}{2}$,0),设A(x1,y1),则圆心坐标为($\frac{2{x}_{1}-p}{4}$,$\frac{{y}_{1}}{2}$),
∴圆心到y轴的距离为$\frac{p-2{x}_{1}}{4}$,圆的半径为$\frac{|FA|}{2}$$\frac{p-2{x}_{1}}{4}$,∴以线段FA为直径的圆与y轴相切.故①正确;
②设A(x,y),则|AF|=|x+$\frac{p}{2}$|,∴x=0时,即当点A为坐标原点时,|AF|为最短,②正确;
③设A(x1,y1),B(x2,y2),则|AF|+|BF|=x1+x2+p,A、B关于x轴对称时,|AF|+|BF|取得最小值,故③不正确;
④设点A、B、C的横坐标分别为a,b,c,则∵|AF|、|BF|、|CF|成等差数列,∴2|BF|=|AF|+|CF|,∴2(b+p)=(a+p)+(c+p),∴2b=a+c,∴点A、B、C的横坐标亦成等差数列,故④正确.
综上知,正确结论的个数是3个
故选:C.

点评 本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到直线与圆的位置关系及直线与抛物线的相关知识,解题时要注意合理地进行等价转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.方程lgx-4+x=0的根一定位于区间(  )
A.(5,6)B.(3,4)C.(2,3)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,在Rt△ABC中,AB=4,AC=3,∠CAB=90°,以点B为一个焦点作一个椭圆,使这个椭圆的另一个焦点在AC边上,且这个椭圆过A、C两点,则椭圆的离心率为(  )
A.$\frac{\sqrt{5}}{3}$B.$\frac{2\sqrt{5}}{3}$C.$\frac{2\sqrt{5}}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知x、y满足约束条件$\left\{\begin{array}{l}x≤a\\ x-2y+3≤0\\ 2x-y+3≥0\end{array}\right.$,且z=x+2y的最大值为11,则a=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在四棱台ABCD-A1B1C1D1中,DD1⊥底面ABCD,四边形ABCD为正方形,DD1=AD=2,A1B1=1,C1E∥平面 ADD1A1
(Ⅰ)证明:E为AB的中点;
(Ⅱ)求二面角A-C1E-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设b,c表示两条直线,α,β表示两个平面,则下列命题正确的是(  )
A.若b?α,c∥α,则c∥bB.若c∥α,c⊥β,则α⊥βC.若c∥α,α⊥β,则c⊥βD.若b?α,b∥c,则c∥α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知各项均为正数的数列{an}前n项和为Sn,首项为a1,且$\frac{1}{2}$,an,Sn是等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若an2=($\frac{1}{2}$)${\;}^{{b}_{n}}$,设cn=$\frac{{b}_{n}}{{a}_{n}}$+(-1)nan,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.y=2sinx-cosx的最大值为(  )
A.1B.3C.$\sqrt{5}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.a,b,c,d四位同学各自对甲、乙两变量做回归分析,分别得到散点图与残差平方和$\sum_{i=1}^{n}$(yi-$\widehat{{y}_{i}}$)2如下表:
abcd
散点图
残差平方和115106124103
哪位同学的实验结果体现拟合甲、乙两变量关系的模型拟合精度高?(  )
A.aB.bC.cD.d

查看答案和解析>>

同步练习册答案