| A. | $\frac{2}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{{2\sqrt{5}}}{5}$ | D. | $\frac{{4\sqrt{5}}}{5}$ |
分析 先确定两条渐近线方程,设双曲线C上的点P(x,y),求出点P到两条渐近线的距离,结合P在双曲线C上,即可求d1•d2的值.
解答 解:由条件可知:两条渐近线分别为x±2y=0
设双曲线C上的点P(x,y),
则点P到两条渐近线的距离分别为d1=$\frac{|x+2y|}{\sqrt{5}}$,d2=$\frac{|x-2y|}{\sqrt{5}}$
所以d1•d2=$\frac{|x+2y|}{\sqrt{5}}$•$\frac{|x-2y|}{\sqrt{5}}$=$\frac{|{x}^{2}-4{y}^{2}|}{5}$=$\frac{4}{5}$
故选:B.
点评 本题考查双曲线的标准方程,考查双曲线的几何性质,求出点P到两条渐近线的距离是关键,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{5}}{3}$ | B. | $\frac{2\sqrt{5}}{3}$ | C. | $\frac{2\sqrt{5}}{5}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若b?α,c∥α,则c∥b | B. | 若c∥α,c⊥β,则α⊥β | C. | 若c∥α,α⊥β,则c⊥β | D. | 若b?α,b∥c,则c∥α |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com