精英家教网 > 高中数学 > 题目详情

(本题满分12分)
已知平面//平面,AB、CD是夹在间的两条线段,A、C在内,B、D在内,点E、F分别在AB、CD上,且,求证:.

证明:连BF延长交面于M,连AM,CM,
,EF//AM

解析试题分析:连BF延长交面于M,连AM,CM
因为BM,CD共面
所以,故
由此得,故EF//AM
因为,所以
考点:线面平行的判定定理
点评:本题还可过C作AB平行线来证明

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
在四棱锥中,平面的中点,

(Ⅰ)求四棱锥的体积
(Ⅱ)若的中点,求证:平面平面
(Ⅲ)求二面角的大小。.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,四棱锥P--ABCD中,PB底面ABCD.底面ABCD为直角梯形,AD∥BC,AB=AD=PB=3,BC=6.点E在棱PA上,且PE=2EA.

(1)求异面直线PA与CD所成的角;
(2)求证:PC∥平面EBD;
(3)求二面角A—BE--D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
如图,在四面体PABC中,PA=PB,CA=CB,D、E、F、G分别是PA,AC、CB、BP的中点.

(1)求证:D、E、F、G四点共面;
(2)求证:PC⊥AB;
(3)若△ABC和△PAB都是等腰直角三角形,且AB=2,,求四面体PABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分)如图,在四棱锥中,底面是正方形,侧棱底面的中点,作于点

(1)证明:平面.
(2)证明:平面.
(3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个多面体的直观图和三视图如下:(其中分别是中点)

(1)求证:平面;
(2)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在长方体 中点.

(1)求证:
(2)在棱上是否存在一点,使得平面若存在,求的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)
在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E的棱AB上移动。
(I)证明:D1EA1D;
(II)AE等于何值时,二面角D1-EC-D的大小为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图:在三棱锥中,已知点分别为棱的中点.
(1)求证:∥平面
(2)若,求证:平面⊥平面

查看答案和解析>>

同步练习册答案