精英家教网 > 高中数学 > 题目详情
若双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的一条渐近线与直线x=a的交点到另一条渐近线的距离等于半焦距,则双曲线的离心率是(  )
A、2
B、
2
C、
3
D、2
2
考点:双曲线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:求出交点坐标,利用点到直线的距离求解关系式,然后求解离心率即可.
解答: 解:双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的一条渐近线为y=
b
a
x
,与直线x=a的交点为(a,b).
另一条渐近线方程为:bx+ay=0.
交点到另一条渐近线的距离等于半焦距,可得:
|ab+ab|
a2+b2
=c

2ab=c2,化为4a2b2=c4,又c2=a2+b2
可得:4a2(c2-a2)=c4
化简得:4(e2-1)=e4,即(e2-2)2=0,
解得e=
2

故选:B.
点评:本题考查双曲线的简单性质的应用,基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知(2x+1)n=a0+a1x+a2x2+…+anxn,令x=0就可以求出常数,即a0=1,请研究其中蕴含的解题方法并完成下列问题:若ex=
+∞
i=0
aixi,即ex=a0+a1x+a2x2+a3x3+a4x4+…+anxn+…,则
1
a1
+
2
a2
+
3
a3
+…+
n
an
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知为虚数单位,复数z=i(2-i),则|z|=(  )
A、
5
B、
3
C、1
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,
AC
AB
I
AB
I
=1,
AB•
BC
I
AB
I
=-2,则AB边的长度为(  )
A、1B、3C、5D、9

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:(
7
3
)
5
×(
8
21
)
0
÷(
7
9
)
4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△PAB和△QAC是两个全等的直角三角形,其中PA=AC=2AB=2CQ=4,∠PBA=∠AQC=90°.将△PAB绕AB旋转一周,当P,Q两点间的距离在[
10
,2
7
]内变化时,动点P所形成的轨迹的长度是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

中央电视台综艺频道推出的大型综艺栏目《星光大道》分为周赛、月赛和年度总决赛三个轮次,通过淘汰方式依次决出周冠军、月冠军和年度总冠军.已知某选手通过周赛、月赛、年赛的概率分别是
3
4
2
3
1
4
,且各轮次通过与否相互独立.
(Ⅰ)设该选手参赛的轮次为ξ,求ξ的分布列和数学期望;
(Ⅱ)对于(Ⅰ)中的ξ,设“函数f(x)=3sin
x+ξ
2
π(x∈R)是奇函数”为事件D,求事件D发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

若偶函数f(x)满足f(x-1)=f(x+1),在x∈[0,1]时,f(x)=x2,则关于x的方程f(x)=(
1
10
x在[0,4]上根的个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P是边长为2的正方形ABCD内的点,若△PAB,△PBC面积均不大于1,则
AP
BP
取值范围是(  )
A、(-1,2)
B、[-1,1]
C、(0,
1
2
]
D、[
1
2
3
2

查看答案和解析>>

同步练习册答案