精英家教网 > 高中数学 > 题目详情
11.如图,在正方体ABCD-A1B1C1D1中,S是B1D1的中点,E,F,G分别是BC,DC和SC的中点,求证:平面EFG∥平面BB1D1D.

分析 连结SB,连结SD,由已知得EG∥SB,由此能证明直线EG∥平面BDD1B1.由已知得FG∥SD,从而FG∥平面BDD1B1,又直线EG∥平面BDD1B1,由此能证明平面EFG∥平面BDD1B1

解答 证明:连结SB,连结SD,
∵E、G分别是BC、SC的中点,
∴EG∥SB,
又SB?平面BDD1B1,EG不包含于平面BDD1B1
∴直线EG∥平面BDD1B1
∵F,G分别是DC、SC的中点,∴FG∥SD,
又SD?平面BDD1B1,FG不包含于平面BDD1B1
∴FG∥平面BDD1B1
又直线EG∥平面BDD1B1,且直线EG?平面EFG,直线FG?平面EFG,
EG∩FG=G,
∴平面EFG∥平面BDD1B1

点评 本题考查直线与平面平行的证明,考查平面与平面平行的证明,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.△ABC中,角A,B,C的对边分别为a,b,c,已知点(a,b)在直线x(sinA-sinB)+ysinB=csinC上.若△ABC为锐角三角形且满足$\frac{m}{tanC}$=$\frac{1}{tanA}$+$\frac{1}{tanB}$,求实数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若抛物线y2=2px(p>0)的焦点与双曲线x2-y2=2的右焦点重合,则p的值为(  )
A.$\sqrt{2}$B.2C.4D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在最受关注的重大社会问题调查中,中国社会科学院中国舆情调查实验室准备从500个关注“食品安全”的人、200个关注“连续雾霾天气”的人、300个关注“公务员加工资”的人中,采用分层抽样的方法从中抽取一部分人座谈,若从关注“食品安全”的人中抽取了10人,则应从关注“连续雾霾天气”的人中抽取4人.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.定义在R上的函数f(x)=ax2+bx2+cx+3同时满足以下条件:
①f(x)在(0,1)上是减函数,在(1,+∞)上是增函数;
②f′(x)是偶函数;
③f(x)的图象在x=0处的切线与直线y=x+2垂直.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)设g(x)=4lnx-m,若存在x∈[1,e],使g(x)<f′(x),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.两个平面平行的条件是(  )
A.有一条直线与这两个平面都平行
B.有两条直线与这两个平面都平行
C.有一条直线与这两个平面都垂直
D.有一条直线与这两个平面所成的角相等

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知正方体ABCD-A1B1C1D1,O是底ABCD对角线的交点.
(1)求异面直线OC1与AB1所成的角的度数;
(2)证明:面C1OD∥面AB1D1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知正四面体ABCD中,E,F分别是BC,AD的中点,求
(1)直线EF,AC所成角的大小;
(2)直线AE,CF所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知奇函数f(x)的定义域为(-∞,0)∪(0,+∞).且f(x)在(0,+∞)上是增函数,f(1)=0,函数g(x)=-x2+mx+1-2m.
(1)求证:函数f(x)在区间(-∞,0)上也是增函数;
(2)解关于x的不等式f(x)<0;
(3)当x∈[-1,0]时,求使得g(x)<0,且f[g(x)]<0恒成立的实数m的取值范围.

查看答案和解析>>

同步练习册答案