精英家教网 > 高中数学 > 题目详情
16.两个平面平行的条件是(  )
A.有一条直线与这两个平面都平行
B.有两条直线与这两个平面都平行
C.有一条直线与这两个平面都垂直
D.有一条直线与这两个平面所成的角相等

分析 根据垂直于同一直线的两个平面互相平行,可得结论.

解答 解:根据垂直于同一直线的两个平面互相平行,可得C正确.
故选:C.

点评 本题考查两个平面平行的判定,考查学生分析解决问题的能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知双曲线x2-$\frac{{y}^{2}}{3}$=1,过点P(2,1)作一直线于A,B两点,若P是AB的中点.
(1)求直线AB的方程;
(2)求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知2x2+3y2≤6,求证:x+2y≤$\sqrt{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=lnx,g(x)=$\frac{x}{x+1}$,记F(x)=f(x)-g(x)
(1)求曲线y=f(x)在x=e处的切线方程;
(2)求函数F(x)在[$\frac{1}{e}$,e2]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在正方体ABCD-A1B1C1D1中,S是B1D1的中点,E,F,G分别是BC,DC和SC的中点,求证:平面EFG∥平面BB1D1D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.用二项式定理证明:1110-1能被100整除.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若函数y=f(x)的图象在点P(1,f(1))处的切线方程是y=$\frac{1}{2}$x+2,则f(1)+f′(1)的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并以30海里/小时的航行速度沿正东方向匀速行驶.经过t小时与轮船相遇.假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向与航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在直棱柱ABC-A1B1C1中,∠BAC=$\frac{π}{2}$,AB=AC=$\sqrt{2}$,AA1=3,D是BC的中点,点E在棱BB1上运动.
(1)证明:AD⊥C1E
(2)当三棱柱C1-A1B1E的体积为$\frac{2}{3}$时,求二面角E-AD-B的大小.

查看答案和解析>>

同步练习册答案