分析 (1)由AB=AC=$\sqrt{2}$,D是BC的中点,可得AD⊥BC,再利用直棱柱的性质可证:AD⊥平面BCC1B1,即可得出;
(2)由A1C1⊥A1B1,AA1⊥A1C1,可得A1C1⊥平面A1ABB1,利用三棱柱C1-A1B1E的体积V=$\frac{1}{3}×{S}_{△{A}_{1}{B}_{1}E}×{A}_{1}{C}_{1}$=$\frac{2}{3}$.可得B1E=2.由(1)可知:AD⊥平面BCC1B1,可得:∠BDE为二面角E-AD-B的平面角,在Rt△BDE中,利用tan∠BDE=$\frac{BE}{BD}$即可得出.
解答 (1)证明:如图所示,![]()
∵AB=AC=$\sqrt{2}$,D是BC的中点,
∴AD⊥BC,
∵直棱柱ABC-A1B1C1中,∴BB1⊥AD,
又BC∩BB1=B,
∴AD⊥平面BCC1B1,
∵C1E?平面BCC1B1,
∴:AD⊥C1E.
(2)解:∵A1C1⊥A1B1,AA1⊥A1C1,
A1B1∩AA1=A1,
∴A1C1⊥平面A1ABB1,
${S}_{△{A}_{1}{B}_{1}E}$=$\frac{1}{2}{A}_{1}{B}_{1}×{B}_{1}E$=$\frac{\sqrt{2}}{2}{B}_{1}E$,
∵三棱柱C1-A1B1E的体积V=$\frac{1}{3}×{S}_{△{A}_{1}{B}_{1}E}×{A}_{1}{C}_{1}$=$\frac{1}{3}×\frac{\sqrt{2}}{2}{B}_{1}E×\sqrt{2}$=$\frac{2}{3}$.
∴B1E=2.
由(1)可知:AD⊥平面BCC1B1,
∴AD⊥BD,AD⊥DE,
∴∠BDE为二面角E-AD-B的平面角,
在Rt△BDE中,tan∠BDE=$\frac{BE}{BD}$=$\frac{1}{1}$=1,
∴$∠BDE=\frac{π}{4}$.
点评 本题考查了线面与垂直的判定与性质定理、直角三角形的性质、直棱柱的性质、三棱锥的体积计算公式、二面角,考查了空间想象能力,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 有一条直线与这两个平面都平行 | |
| B. | 有两条直线与这两个平面都平行 | |
| C. | 有一条直线与这两个平面都垂直 | |
| D. | 有一条直线与这两个平面所成的角相等 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 48种 | B. | 96种 | C. | 384种 | D. | 480种 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com