精英家教网 > 高中数学 > 题目详情
15.tan40°•tan20°+$\frac{\sqrt{3}}{3}$(tan40°+tan20°)的值为1.

分析 由条件利用两角和的正切公式求得tan40°+tan20°,再把它代入要求的式子化简可得结果.

解答 解:由于tan40°+tan20°=tan60°(1-tan40°•tan20°)=$\sqrt{3}$-$\sqrt{3}$tan40°•tan20°,
∴tan40°•tan20°+$\frac{\sqrt{3}}{3}$(tan40°+tan20°)=tan40°•tan20°+$\frac{\sqrt{3}}{3}$($\sqrt{3}$-$\sqrt{3}$tan40°•tan20°)
=1,
故答案为:1.

点评 本题主要考查两角和的正切公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并以30海里/小时的航行速度沿正东方向匀速行驶.经过t小时与轮船相遇.假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向与航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在直棱柱ABC-A1B1C1中,∠BAC=$\frac{π}{2}$,AB=AC=$\sqrt{2}$,AA1=3,D是BC的中点,点E在棱BB1上运动.
(1)证明:AD⊥C1E
(2)当三棱柱C1-A1B1E的体积为$\frac{2}{3}$时,求二面角E-AD-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设复数z=1+i•tan600°,(i为虚数单位),则复数z2对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.现有编号1,2,3,4,5五个小球和编号1,2,3,4,5的五个盒子,现将这五个球放入这五个盒子中,并且恰有两个球编号与盒子编号相同,则不同的投放方式有(  )种.
A.20B.21C.22D.23

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在如图所示的直角坐标系xOy中,点A、B是单位圆上的点,且A(1,0),∠AOB=$\frac{π}{3}$,现有一动点C在单位圆的劣弧$\widehat{AB}$上运动,设∠AOC=α.
(1)求点B的坐标;
(2)若tanα=$\frac{1}{3}$,求$\overrightarrow{OA}$•$\overrightarrow{OC}$的值;
(3)若$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,其中x、y∈R,求x+y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$是夹角为$\frac{π}{3}$的两个单位向量,$\overrightarrow{a}}$=$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=2$\overrightarrow{{e}_{2}}$,求$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知{an}是等比数列,满足a4=27,q=-3,求a7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(理)设函数f(x)=aexlnx+$\frac{b{e}^{x-1}}{x}$,
(1)求导函数f′(x)
(2)若曲线y=f(x)在点(1,f(1))处的切线方程为y=e(x-1)+2求a,b.

查看答案和解析>>

同步练习册答案