精英家教网 > 高中数学 > 题目详情
在极坐标系中,直线l与曲线C的极坐标方程分别是ρcos(θ+
π
4
)=
3
2
2
和ρsin2θ=4cosθ,直线l与曲线C交于两点A,B,求线段AB的长.
考点:简单曲线的极坐标方程
专题:坐标系和参数方程
分析:把极坐标方程化为直角坐标方程,联立方程组求得交点的坐标,可得弦长.
解答: 解:把直线l与的极坐标方程ρcos(θ+
π
4
)=
3
2
2
化为直角坐标方程为
2
2
x-
2
2
y=
3
2
2
,即x-y-3=0.
曲线C:ρsin2θ=4cosθ的直角坐标方程为y2=4x,
解方程组
x-y-3=0
y2=4x
,求得
x=1
y=-2
,或
x=9
y=6
,可得A(1,-2)、B(9,6),
∴弦长AB=
(9-1)2+(6+2)2
=8
2
点评:本题主要考查把极坐标方程化为直角坐标方程的方法,求两条曲线的交点坐标,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

圆O的弦AB,CD相交于点P,已知P是AB的中点,AB=12,PC=4,那么PD=(  )
A、16B、9C、8D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

平面内有向量
OA
=(1,7),
OB
=(5,1),
OP
=(2,1),点M(x,y)为直线OP上的一动点.
(1)用只含y的代数式表示
OM
的坐标;
(2)求
MA
MB
的最小值,并写出此时
OM
的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

某房地产开发公司用2.56×107元购得一块空地,计划在该空地上建造一栋至少10层,每层2000平方米的楼房,经测算,如果将楼房建为x(x≥10)层,则每平米的平均建筑费用为1000+50x(单位:元)
(Ⅰ)写出楼房平均综合费用y关于建造层数x的函数关系式;
(Ⅱ)该楼房应建造多少层时,可使楼房每平米的平均综合费用最少?最少费用是多少?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=
购地总费用
建筑面积

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4,设圆C的半径为1,圆心在直线l上.
(Ⅰ)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;
(Ⅱ)若圆C上存在唯一一点M,使MA=2MO,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,A、B分别是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的上、下顶点,椭圆C的焦点F与抛物线y2=4
2
x的焦点重合,且S△ABF=
2

(1)求椭圆的方程;
(2)若不过点A的直线l与椭圆相交于P、Q两点,且AP⊥AQ,求证:直线l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学参加高二学业水平测试的4门必修科目考试.已知该同学每门学科考试成绩达到“A”等级的概率均为
2
3
,且每门考试成绩的结果互不影响.
(1)求该同学至少得到两个“A”的概率;
(2)已知在高考成绩计分时,每有一科达到“A”,则高考成绩加1分,如果4门学科均达到“A”,则高考成绩额外再加1分.现用随机变量Y表示该同学学业水平测试的总加分,求Y的概率分别列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在[-1,1]上的奇函数,当x∈(0,1]时的图象如图所示.
(1)画出函数在[-1,0)上的图象;
(2)求函数y=f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,直角梯形PBCD,PD∥BC,∠D=90°,PD=9,BC=3,CD=4,点A在PD上,且PA=2AD,将△PAB沿AB折到△SAB的位置,使SB⊥BC.

(Ⅰ)求证:SA⊥AD;
(Ⅱ)点E在SD上,且
SE
=
1
3
SD
,求二面角S-AC-E的余弦值.

查看答案和解析>>

同步练习册答案