精英家教网 > 高中数学 > 题目详情
19.已知O是边长为2的等边△ABC的重心,则 ($\overrightarrow{OA}$+$\overrightarrow{OB}$)•($\overrightarrow{OA}$+$\overrightarrow{OC}$)=-$\frac{2}{3}$.

分析 由已知得OA,OB,OC两两夹角为120°,|OA|=|OB|=|OC|=$\frac{2\sqrt{3}}{3}$,从而$\overrightarrow{OA}•\overrightarrow{OC}$=$\overrightarrow{OA}•\overrightarrow{OB}=\overrightarrow{OB}•\overrightarrow{OC}$=-$\frac{2}{3}$,由此能求出($\overrightarrow{OA}$+$\overrightarrow{OB}$)•($\overrightarrow{OA}$+$\overrightarrow{OC}$)的值.

解答 解:∵O是边长为2的等边△ABC的重心,
∴OA,OB,OC两两夹角为120°,
|OA|=|OB|=|OC|=$\frac{2}{3}\sqrt{4-1}$=$\frac{2\sqrt{3}}{3}$,
$\overrightarrow{OA}•\overrightarrow{OC}$=|$\overrightarrow{OA}$|•|$\overrightarrow{OC}$|•cos120°=$\frac{4}{3}•(-\frac{1}{2})=-\frac{2}{3}$,
同理,$\overrightarrow{OA}•\overrightarrow{OB}=\overrightarrow{OB}•\overrightarrow{OC}$=-$\frac{2}{3}$,
($\overrightarrow{OA}$+$\overrightarrow{OB}$)•($\overrightarrow{OA}$+$\overrightarrow{OC}$)
=$\overrightarrow{OA}$2+$\overrightarrow{OA}•\overrightarrow{OC}$+$\overrightarrow{OA}•\overrightarrow{OB}$+$\overrightarrow{OB}•\overrightarrow{OC}$
=$\frac{4}{3}-\frac{2}{3}-\frac{2}{3}-\frac{2}{3}$=-$\frac{2}{3}$.
故答案为:$-\frac{2}{3}$.

点评 本题考查平面向量数量积、三角形重心性质等基础知识,考查推理论证能力、运算求解能力,考查数形结合思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=sinx,g(x)=ex•f'(x),其中e为自然对数的底数.
(1)求曲线y=g(x)在点(0,g(0))处的切线方程;
(2)若对任意$x∈[{-\frac{π}{2},0}]$,不等式g(x)≥x•f(x)+m恒成立,求实数m的取值范围;
(3)试探究当$x∈[{\frac{π}{4},\frac{π}{2}}]$时,方程g(x)=x•f(x)的解的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,A、B为锐角,角A、B、C所对应的边分别为a、b、c,且sin A=$\frac{\sqrt{10}}{10}$,cos2B=$\frac{3}{5}$,
(1)求A+B的值;
(2)若b-a=2-$\sqrt{2}$,求a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{{2}^{x}-a•{2}^{x}}{{2}^{x}+{2}^{-x}}$是定义R在上的奇函数.
(1)求实数a的值,并求函数f(x)的值域;
(2)设g(x)=(2x+2-x)•f(x).
(ⅰ)判断函数y=g(x)的单调性(不需要说明理由),并求使不等式g(x2+tx)+g(4-x)>0对x∈R恒成立的实数t的取值范围;
(ⅱ)设h(x)=22x+2-2x-2m•g(x)且h(x)在[1,+∞)上的最小值为-2,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,角A、B、C所对的边分别是a、b、c,若$a=\sqrt{6}$,b=2,A=60°,则B=(  )
A.30°B.45°C.135°D.45°或135°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,是四个可以自由转动的转盘,转盘被平均分成若干个扇形,转动转盘,转盘停止后,有两个转盘的指针指向白色区域的概率相同,则这两个转盘是(  )
A.转盘1和转盘2B.转盘2和转盘3C.转盘2和转盘4D.转盘3和转盘4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=3x+1-3,则f(-1)的值为(  )
A.-6B.-3C.-2D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在等腰△ABC中,A=120°,则向量$\overrightarrow{AB}$与$\overrightarrow{BC}$的夹角为150°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在等比数列{an}中,若a4-a2=6,a5-a1=15,求a3

查看答案和解析>>

同步练习册答案