精英家教网 > 高中数学 > 题目详情
10.不等式组$\left\{\begin{array}{l}{x-y+1≥0}\\{x≤4}\\{y≥3}\\{\;}\end{array}\right.$所表示的平面区域的面积为(  )
A.1B.2C.3D.4

分析 作出不等式对应的平面区域,根据平面区域的形状确定平面区域的面积.

解答 解:不等式组对应的平面区域如图
则对应区域为直角三角形ABC.
则三点坐标分别为A(2,3),B(4,3),C(4,5),
则AB=2,BC=2,
所以三角形的面积为S=$\frac{1}{2}$×2×2=2.
故选:B.

点评 本题主要考查二元一次不等式组表示平面区间,考查学生的作图能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.下列说法正确的是(  )
A.函数y=2x2-x+1在(0,+∞)上是增函数
B.幂函数在(0,+∞)上都是增函数
C.函数y=log2(x+$\sqrt{{x}^{2}+1}$)既不是奇函数,也不是偶函数
D.已知f(x)是定义在R上的增函数,若a+b>0,则有f(a)+f(b)>f(-a)+f(-b)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.为了增强环保意识,某校从男生中随机制取了60人,从女生中随机制取了50人参加环保知识测试,统计数据如表所示,经计算K2=7.822,则环保知识是否优秀与性别有关的把握为(  )
优秀非优秀总计
男生402060
女生203050
总计6050110
附:x2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1}+{n}_{2}+{n}_{+1}{n}_{+2}}$
P(K2≥k)0.5000.1000.0500.0100.001
k0.4552.7063.8416.63510.828
A.90%B.95%C.99%D.99.9%

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.计算:cos24°cos36°-cos66°cos54°=(  )
A.0B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{\begin{array}{l}-{x^2}+2x,x≤0\\ ln(x+1),x>0\end{array}\right.$,若对x∈R都有|f(x)|≥ax,则实数a的取值范围是(  )
A.(-∞,0]B.[-2,0]C.[-2,1]D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.随机观测生产某种们零件的某工厂20名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,48,37,25,45,43,31,49,34,33,43,38,32,46,39,36.根据上述数据得到样本的频率分布表如下:
分组频数频率
[25,30]20.10
(30,35]40.20
(35,40]50.25
(40,45]mfm
(45,50]nfn
(1)确定样本频率分布表中m,n,fm和fn的值;
(2)根据上述频率分布表,画出样本频率分布直方图;
(3)根据样本频率分布直方图,求在该厂任取3人,至少有1人的日加工零件数落在区间(30,35]的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若$|{\begin{array}{l}{2^x}&1\\ 3&{2^x}\end{array}}|=0$,则x的值是${log}_{2}\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设定义在D上的函数y=h(x)在点P(x0,h(x0)处的切线方程为l:y=g(x),当x≠x0时,若$\frac{h(x)-g(x)}{x-{x}_{0}}$>0在D内恒成立,则称P为函数y=h(x)的“类对称点”,则f(x)=lnx+2x2-x的“类对称点”的横坐标是(  )
A.eB.$\frac{1}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.单位向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|3$\overrightarrow{a}$-4$\overrightarrow{b}$|=5,则|$\overrightarrow{a}$+2$\overrightarrow{b}$|=(  )
A.3B.$\sqrt{3}$C.5D.$\sqrt{5}$

查看答案和解析>>

同步练习册答案