精英家教网 > 高中数学 > 题目详情
12.如图,在平面四边形ABCD中,AB=AD=CD=1,$BD=\sqrt{2}$,BD⊥CD,将其沿对角线BD折成四面体A′-BCD,使平面A′BD⊥平面BCD,若四面体A′-BCD顶点在同一球面上,则该球的表面积为(  )
A.$\frac{{\sqrt{3}}}{2}π$B.C.$\frac{{\sqrt{2}}}{3}π$D.

分析 由题意,BC的中点就是球心,求出球的半径,即可得到球的表面积.

解答 解:由题意,四面体A-BCD顶点在同一个球面上,△BCD和△ABC都是直角三角形,
所以BC的中点就是球心,所以BC=$\sqrt{3}$,球的半径为:$\frac{\sqrt{3}}{2}$,
所以球的表面积为:$4π•(\frac{\sqrt{3}}{2})^{2}$=3π.
故选B.

点评 本题是基础题,考查四面体的外接球的表面积的求法,找出外接球的球心,是解题的关键,考查计算能力,空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.执行下面的程序框图,输出的S的值为(  )
A.225B.256C.289D.324

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.直角坐标系中,点$(1,-\sqrt{3})$的极坐标可以是(  )
A.$(2,\frac{5π}{6})$B.$(2,\frac{11π}{6})$C.$(2,\frac{4π}{3})$D.$(2,\frac{5π}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某几何体的三视图如图所示,则其表面积为(  )
A.18B.20C.22D.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.平面直角坐标系中,动圆C与圆(x-1)2+y2=$\frac{1}{4}$外切,且与直线x=-$\frac{1}{2}$相切,记圆心C的轨迹为曲线T
(Ⅰ)求曲线T的方程;
(Ⅱ)设过定点Q(m,0)(m为非零常数)的动直线l与曲线T交于A、B两点,问:在曲线T上是否存在点P(与A、B两点相异),当直线PA、PB的斜率存在时,直线PA、PB的斜率之和为定值,若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.将三项式(x2+x+1)n展开,当n=1,2,3,…时,得到如下所示的展开式,如图所示的广义杨辉三角形:
(x2+x+1)0=1
(x2+x+1)1=x2+x+1
(x2+x+1)2=x4+2x3+3x2+2x+1
(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1
观察多项式系数之间的关系,可以仿照杨辉三角形构造如图所示的广义杨辉三角形,其构造方法:第0行为1,以下各行每个数是它头上与左右两肩上3数(不足3数的,缺少的数计为0)之和,第k行共有2k+1个数.若在(a+x)(x2+x+1)4的展开式中,x6项的系数为46,则实数a的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一几何体由一个四棱锥和一个球组成,四棱锥的顶点都在球上,几何体的三视图如图所示,其中正视图和侧视图完全相同,球的表面积是36π,四棱锥的体积为(  )
A.18B.9C.9$\sqrt{2}$D.18$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知复数z1=2t+i,z2=1-2i,若$\frac{z_1}{z_2}$为实数,则实数t的值是(  )
A.1B.-1C.$\frac{1}{4}$D.-$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,已知直线l的参数方程为$\left\{\begin{array}{l}x=1-\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=6cosθ.
(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)若点P的直角坐标为(1,0),曲线C与直线l交于A,B两点,求|PA|+|PB|的值.

查看答案和解析>>

同步练习册答案