精英家教网 > 高中数学 > 题目详情
已知直线l:
x=tcosα+m
y=tsinα
(t为参数)经过椭圆C:
x=5cosφ
y=3sinφ
(φ为参数)的右焦点F.
(Ⅰ)求m的值;
(Ⅱ)设直线l与椭圆C交于A,B两点,求|FA|•|FB|的最大值与最小值.
考点:参数方程化成普通方程
专题:选作题,坐标系和参数方程
分析:(Ⅰ)椭圆的参数方程化为普通方程,可得F的坐标,直线l经过点(m,0),可求m的值;
(Ⅱ)将直线l的参数方程代入椭圆C的普通方程,利用参数的几何意义,即可求|FA|•|FB|的最大值与最小值.
解答: 解:(Ⅰ)椭圆的参数方程化为普通方程,得
x2
25
+
y2
9
=1

∴a=5,b=3,c=4,则点F的坐标为(4,0).
∵直线l经过点(m,0),∴m=4.…(4分)
(Ⅱ)将直线l的参数方程代入椭圆C的普通方程,并整理得:(9cos2α+25sin2α)t2+72tcosα-81=0.
设点A,B在直线参数方程中对应的参数分别为t1,t2,则
|FA|•|FB|=|t1t2|=
81
9cos2α+25sin2α
=
81
9+16sin2α
.…(8分)
当sinα=0时,|FA|•|FB|取最大值9;
当sinα=±1时,|FA|•|FB|取最小值
81
25
.…(10分)
点评:本题考查参数方程化成普通方程,考查学生的计算能力,正确运用参数的几何意义是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2|x+1|-x.
(Ⅰ)根据绝对值和分段函数知识,将f(x)写成分段函数;
(Ⅱ)在如图的直角坐标系中画出函数f(x)的图象:
(Ⅲ)根据图象,写出函数f(x)的单调区间、值域.(不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

2014年巴西世界杯的周边商品有80%左右为“中国制造”,所有的厂家都是经过层层筛选才能获此殊荣.甲、乙两厂生产同一产品,为了解甲、乙两厂的产品质量,以确定这一产品最终的供货商,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽出取14件和5件,测量产品中的微量元素x,y的含量(单位:毫克).下表是乙厂的5件产品的测量数据:
编号12345
x169178166175180
y7580777081
(1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量;
(2)当产品中的微量元素x,y满足x≥175,且y≥75时,该产品为优等品.用上述样本数据估计乙厂生产的优等品的数量;
(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列及其均值(即数学期望).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的多面体中,ABCD是菱形,BDEF是矩形,ED⊥平面ABCD,∠BAD=
π
3
,AD=2.
(Ⅰ)求证:平面FCB∥平面AED;
(Ⅱ)若二面角A-EF-C的大小为
π
3
,求线段ED的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,公比q>1,a5-a1=15,a4-a2=6,求数列{an}的通项公式及前9项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2cosx,
3
sinx),
b
=(cosx,2cosx),f(x)=
a
b
+1.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)当x∈[0,
π
4
]时,求函数y=f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,BC=24.AC,AB边上的中线长之和等于39.
(Ⅰ)求△ABC重心M的轨迹方程;
(Ⅱ)若M是(Ⅰ)中所求轨迹上的一点,且∠BMC=60°,求△BMC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的内角A,B,C对边分别为a,b,c,且满足sinA:sinB:sinC=2:3:4,则
a+b
b+c
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(3x)+8x,则
lim
△x→0
f(1-2△x)-f(1)
△x
=
 

查看答案和解析>>

同步练习册答案