精英家教网 > 高中数学 > 题目详情
2.扇形AOB的周长为8cm,若这个扇形的面积为3cm2,则圆心角的大小为6或$\frac{2}{3}$.

分析 根据题意设出扇形的弧长与半径,通过扇形的周长与面积,即可求出扇形的弧长与半径,进而根据公式α=$\frac{l}{r}$,求出扇形圆心角的弧度数.

解答 解:设扇形的弧长为:l,半径为r,所以2r+l=8,
因为S扇形=$\frac{1}{2}$lr=3,
所以解得:r=1,l=6或者r=3,l=2
所以扇形的圆心角的弧度数是:6或$\frac{2}{3}$.
故答案为:6或$\frac{2}{3}$.

点评 本题主要考查扇形的周长与扇形的面积公式的应用,以及考查学生的计算能力,此题属于基础题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.福建省第十六届运动会将于2018年在宁德举行,为了更好的迎接运动会,做好夏季降温的同时要减少能源消耗,某体育馆外墙需要建造可使用30年的隔热层,每厘米厚的隔热层建造成本为2万元,设每年的能源消耗费用为C(单位:万元),隔热层厚度为x(单位:厘米),二者满足函数关系式:C(x)=$\frac{k}{x+5}$(0≤x≤15,k为常数).已知隔热层厚度为10厘米时,每年能源消耗费用1万元.设f(x)为隔热层建造费用与30年的能源消耗费用之和.
(1)求k的值及f(x)的表达式
(2)隔热层修建多厚时,总费用f(x)达到最小,并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.f(x)=$\left\{\begin{array}{l}{sin(\frac{π}{2}x+\frac{π}{6}),x≤2015}\\{f(x-4),x>2015}\end{array}\right.$,则f(2014)+f(2015)+f(2016)=(  )
A.1+$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.1-$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知$\overrightarrow a=(0,-1,1),\overrightarrow b=(2,2,1)$,则$\overrightarrow a$在$\overrightarrow b$上的投影是-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知曲线f(x)=$\frac{a}{x}$-$\sqrt{x}$在x=4处的切线方程为5x+16y+b=0,求实数a与b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$不共面,则满足A,B,C,P四点共面的条件是(  )
A.$\overrightarrow{OP}$=2x$\overrightarrow{AO}$+3y$\overrightarrow{BO}$+4z$\overrightarrow{CO}$,且2x+3y+4z=1B.$\overrightarrow{OP}$+$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$
C.$\overrightarrow{AP}$=$\overrightarrow{AB}$+3$\overrightarrow{AC}$D.$\overrightarrow{AP}$=2$\overrightarrow{OB}$-$\overrightarrow{OC}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知{an}是等差数列,a1=x-2,a2=x,a3=2x+1,则该数列的通项公式是(  )
A.an=2n+3B.an=2n-3C.an=2n+1D.an=2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=[ax2-(5a+1)x+7a+3]ex
(1)若a=0,求函数f(x)在点A(0,f(0))处的切线方程;
(2)讨论函数f(x)的单调性,并求出单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知点O是△ABC的外心,AB=4,AO=3,则$\overrightarrow{AB}$•$\overrightarrow{AC}$的取值范围是(  )
A.[-4,24]B.[-8,20]C.[-8,12]D.[-4,20]

查看答案和解析>>

同步练习册答案