精英家教网 > 高中数学 > 题目详情
为了应对新疆暴力恐怖活动,重庆市警方从武警训练基地挑选反恐警察,从体能、射击、反应三项指标进行检测,如果这三项中至少有两项通过即可入选.假定某基地有4名武警战士(分别记为A、B、C、D)拟参加挑选,且每人能通过体能、射击、爆破的概率分别为
2
3
2
3
1
2
.这三项测试能否通过相互之间没有影响.
(1)求A能够入选的概率;
(2)规定:按入选人数得训练经费,每入选1人,则相应的训练基地得到5000元的训练经费,求该基地得到训练经费的分布列与数学期望(期望精确到个位).
考点:离散型随机变量的期望与方差,相互独立事件的概率乘法公式
专题:概率与统计
分析:(I)设A通过体能、射击、爆破分别记为事件M,N,P,且P(M)=
2
3
,P(N)=
2
3
,P(P)=
1
2
,由此能求出A能够入选的概率.
(Ⅱ)记X表示该训练基地入选人数,则得到的训练经费为Y=5000X,又X可能的取值为0,1,2,3,4.分别求出相应在的概率,由此能求出该基地得到训练经费的分布列与数学期望.
解答: 解:(I)设A通过体能、射击、爆破分别记为事件M,N,P,
且P(M)=
2
3
,P(N)=
2
3
,P(P)=
1
2

∴A能够入选的概率:
p=P(MN
.
P
)+P(M
.
N
P)+P(
.
M
NP
)+P(MNP)
=
2
3
×
2
3
×
1
2
+
2
3
×
1
3
×
1
2
+
1
3
×
2
3
×
1
2
+
2
3
×
2
3
×
1
2

=
2
3

(Ⅱ)记X表示该训练基地入选人数,则得到的训练经费为Y=5000X,
又X可能的取值为0,1,2,3,4.
P(X=0)=
C
0
4
(
2
3
)0(
1
3
)4
=
1
81

P(X=1)=
C
1
4
(
2
3
)(
1
3
)3
=
8
81

P(X=2)=
C
2
4
(
2
3
)2(
1
3
)2
=
24
81

P(X=3)=
C
3
4
(
2
3
)3(
1
3
)
=
32
81

P(X=4)=
C
4
4
(
2
3
)4•(
1
3
)0
=
16
81

X 0 1 2 3 4
P
1
81
8
81
24
81
32
81
16
81
∴训练经费Y=5000X的分布列为:
Y=5000X 0 5000 10000 15000 20000
P
1
81
8
81
24
81
32
81
16
81
EY=
1
81
+5000×
8
81
+10000×
24
81
+15000×
32
81
+20000×
16
81
≈13333(元).
点评:本题考查概率的求法,考查离散型随机变量的分布列和期望的求法,是中档题,在历年高考中都有是必考题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

log
2
sin
5
12
π+log
2
cos
5
12
π的值是(  )
A、4B、1C、-4D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

某校举行汉字听写大赛,有甲、乙、丙、丁四支代表队进入到最后的决赛.决赛规则如下:对每个队,最多进行5轮听写,若连续两轮听写错误,则该对退出比赛.共有5轮、4轮、三轮听写正确的代表队分别可获得一等奖、二等奖、三等奖,奖金依次是650元、300元、150元,已知甲代表队每轮听写正确的概率均为
1
2
,且每轮听写正确与否互不影响.
(Ⅰ)求甲队获奖的概率;
(Ⅱ)求甲队获得奖金x(元)的分布列和均值(数学期望).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC中,D在边BC上,BD=2,CD=1,AD=
3
,B=60°,求:
(1)AB的长;
(2)AC的长;
(3)△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的角A,B,C所对的边分别为a,b,c,且bcosC+
1
2
c=a.
(1)求角B的大小;
(2)若b=1,求ac的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E是棱AB上一点,且不为中点.
(1)证明:D1E⊥A1D;
(2)证明:平面D1DE不可能与平面D1BC垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
的夹角为θ,|
a
︳=2,|
b
︳=1,分别根据下列所给的θ的值,求
a
b
的值.
(1)θ=60°;
(2)θ=135°; 
(3)θ=150°.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数m、n满足
m
1+i
=2-ni,复数z=m+ni的模|z|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=x2-1与直线x+y=1围成的图形的面积为
 

查看答案和解析>>

同步练习册答案