精英家教网 > 高中数学 > 题目详情
4.集合A={x|-2<x<5},B={x|m+1<x<2m-1},且B?∁RA,求实数m的取值范围.

分析 根据集合的基本运算和关系进行求解即可.

解答 解:∵A={x|-2<x<5},
∴∁RA={x|x≥5或x≤-2},
∵B?∁RA,
∴当m+1≥2m-1,即m≤2时,B=∅,满足条件.
若B≠∅,若B?∁RA,
则$\left\{\begin{array}{l}{m+1<2m-1}\\{2m-1≤-2}\end{array}\right.$或$\left\{\begin{array}{l}{m+1<2m-1}\\{m+1≥5}\end{array}\right.$,
即$\left\{\begin{array}{l}{m>2}\\{m≤-\frac{1}{2}}\end{array}\right.$或$\left\{\begin{array}{l}{m>2}\\{m≥4}\end{array}\right.$,
即m≥4,
综上m≥4或m≤2.

点评 本题主要考查集合的基本关系的应用,根据集合的基本运算,结合不等式的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=2x,g(x)=(2-lnx)•lnx+b(b∈R),记h(x)=f(x)-$\frac{1}{f(x)}$
(1)若h(x0)=$\frac{8}{3}$,求实数x0的值
(2)若存在x1,x2∈[1,+∞),使得h(x1)=g(x2),求实数b的取值范围
(3)若g(x)<0,对于x∈(0,+∞)恒成立,试问是否存在实数x,使得h[g(x)]=-b成立,若存在,求出实数x的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.一位健身爱好者在广场上散步,从广场上的A点出发,向东走了30m到达B点,然后又向南走了40m到达C点,最后又向西走了60m到达D点做深呼吸运动,取在出发点A正东10m处的一点为坐标原点,在平面直角坐标系中表示出该人的运动过程并求出全程的位移和路程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知不等式2x2+px+q<0的解集是-2<x<1,求不等式px2+qx+2>0的解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求函数y=x-$\frac{3}{x}$(x∈[2,5])的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知非空集合A⊆N,且满足条件“若x∈A则(10-x)∈A“,试写出满足条件且只含有2个元素的所有集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知集合A={x|x2-3x+2≤0},B={x|x2-(a2+a+1)x+a(a2+1)≤0}.
(1)若a=0,求A∪B;
(2)若B⊆A,求实数a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求函数y=x4•(2-x2) (0<x<$\sqrt{2}$)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设a>b>0,点A(a,0),B(-a,0),C(-a,-b),D(a,-b),取线段AB上一点M,找到线段AB上另一点N,使得|AM|,$\frac{1}{2}$|MN|,|NB|成等比数列,设直线DM,CN交于点P.求证:动点P的轨迹就是椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的上半部分.

查看答案和解析>>

同步练习册答案