精英家教网 > 高中数学 > 题目详情
6.已知$\overrightarrow{a}$=(2x,-1),$\overrightarrow{b}$=(-4,2),若$\overrightarrow{a}$$∥\overrightarrow{b}$,则x的值为(  )
A.$\frac{1}{4}$B.-$\frac{1}{4}$C.1D.-1

分析 利用向量共线列出方程求解即可.

解答 解:$\overrightarrow{a}$=(2x,-1),$\overrightarrow{b}$=(-4,2),若$\overrightarrow{a}$$∥\overrightarrow{b}$,
可得4=4x,解得x=1.
故选:C.

点评 本题考查向量共线的充要条件的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.为了了解某校高一女生的身高情况,随机抽取M个高一女生测量身高,所得数据整理后列出频率分布如表:
组 别频数频率
[146,150)60.12
[150,154)80.16
[154,158)140.28
[158,162)100.20
[162,166)80.16
[166,170)mn
合 计M1
(Ⅰ)求出表中字母m,n所对应的数值;
(Ⅱ)在图中补全频率分布直方图;
(Ⅲ)根据频率分布直方图估计该校高一女生身高的中位数(保留两位小数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F1(-1,0),离心率是e,点(1,e)在椭圆上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点M(2,0),过点F1的直线交C于A,B两点,直线MA,MB与直线x=-2分别交于P,Q两点,求△MPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合A={x|y=lg(5-x)},B={y|y=lg(5-x)},则A∩B=(  )
A.∅?B.RC.(-∞,5)D.[0,5]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知a=$\int_0^{\frac{π}{2}}{cosxdx}$,则二项式${(a\sqrt{x}-\frac{1}{x})^6}$的展开式中的常数项为15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若不等式x2+mx-m>0,的解集为R,则实数m的取值范围是(  )
A.m<-4或m>0B.m<0或m>4C.-4<m<0D.0<m<4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若函数f(x)=$\left\{\begin{array}{l}{{5}^{-x},x∈(-1,0]}\\{{5}^{x},x∈[0,1]}\end{array}\right.$,则f(log54)=(  )
A.$\frac{1}{3}$B.3C.$\frac{1}{4}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合M={0,1,2,3,4},N={x|1<log2(x+2)<2},则M∩N=(  )
A.{0,1}B.{2,3}C.{1}D.{2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知向量$\overrightarrow a=(3,1)$,$\overrightarrow b=(1,3)$,$\overrightarrow c=(k,7)$,若$(\overrightarrow a-\overrightarrow c)$∥$\overrightarrow b$,则k=5.

查看答案和解析>>

同步练习册答案