精英家教网 > 高中数学 > 题目详情
某人参加一次考试,4道题中答对3道题则为及格,已知他的解题正确率为0.4,则他能及格的概率为(  )
A、
16
625
B、
112
625
C、
8
125
D、
27
125
考点:相互独立事件的概率乘法公式
专题:应用题,概率与统计
分析:先求得他答对3道题的概率为
C
3
4
•0.43(1-0.4),他答对4道题的概率为 0.44,相加即得所求.
解答: 解:他答对3道题的概率为
C
3
4
•0.43(1-0.4)=0.1536,
他答对4道题的概率为0.44=0.0256,
故他能及格的概率为0.1536+0.0256=0.178,
故选B.
点评:本题主要考查n次独立重复实验中恰好发生k次的概率,等可能事件的概率,体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知不等式组
x≥0
y≥0
y≤x+1
y≤3-x
表示的平面区域为D,则z=x+2y的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

由直线y=x+1上的点向圆x2-6x+y2+8=0引切线,则切线长的最小值为(  )
A、1
B、2
2
C、
7
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x+
π
3
)(0≤x≤π)的零点为x1,x2,则cos(x1+x2)=(  )
A、
3
2
B、-
3
2
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a是函数f(x)=2x-|log2x|的零点,若0<x0<a,则f(x0)的值满足(  )
A、f(x0)=0
B、f(x0)>0
C、f(x0)<0
D、f(x0)的符号不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

将曲线ρcosθ+2ρsinθ-1=0的极坐标方程化为直角坐标方程为(  )
A、y+2x-1=0
B、x+2y-1=0
C、x2+2y2-1=0
D、2y2+x2-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,角A,B,C的对边分别是a,b,c,若a=6,b=5,cosA=-
4
5

(1)求角B的大小;
(2)求边c.

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的不等式:22x-(λ+1)•2x+λ<0 (λ∈R+).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|0<x≤2},B={x|x≥a,a>0},求A∩B,A∪B.

查看答案和解析>>

同步练习册答案