精英家教网 > 高中数学 > 题目详情
11.已知复数z满足(2z+1)i=2,则z=(  )
A.-1-2iB.-$\frac{1}{2}$+iC.-$\frac{1}{2}$-iD.$\frac{1}{2}$-i

分析 直接利用复数的除法运算法则化简求解即可.

解答 解:复数z满足(2z+1)i=2,
则z=$\frac{1}{i}-\frac{1}{2}$=$-\frac{1}{2}-i$.
故选:C.

点评 本题考查复数的代数形式混合运算,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.下列函数在区间(0,+∞)上是减函数的是(  )
A.f(x)=3x-2B.f(x)=9-x2C.$f(x)=\frac{1}{x-1}$D.f(x)=log2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列各式的大小关系正确的是(  )
A.sin11°>sin168°B.sin194°<cos160°
C.cos(-$\frac{15π}{8}$)>cos$\frac{14π}{9}$D.tan(-$\frac{π}{5}$)<tan(-$\frac{3π}{7}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x2+2ax+2,x∈[-5,5].
(Ⅰ)当a=-1时,求函数f(x)的最大值和最小值;
(Ⅱ)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若数列{bn}:对于任意的n∈N*,都有bn+2-bn=d(常数),则称数列{bn}是公差为d的准等差数列.
(1)设数列{an}满足:a1=a,对于任意的n∈N*,都有an+an+1=2n,证明:{an}为准等差数列,并求其通项公式.
(2)设(1)中的数列{an}的前n项和为Sn,试问:是否存在实数a,使得数列{Sn}有连续的两项都等于50?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知f(x)=$\left\{\begin{array}{l}{(\frac{1}{4})^{x},x∈(-∞,1)}\\{lo{g}_{\frac{1}{2}}x,x∈[1,+∞)}\end{array}\right.$,则f(f(-2))=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设三次方程式x3-17x2+32x-30=0有两个复数根a+i,1+bi,其中a,b是不为0的实数,试求另一实根是15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知α、β是两个平面,m、n是两条直线,则下列命题不正确的是(  )
A.若m∥n,m⊥α,则n⊥αB.若m⊥α,m⊥β,则α∥β
C.若m⊥α,m?β,则α⊥βD.若m⊥α,α∩β=n,则m∥n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.计算:$\sqrt{{{({3-π})}^2}}+ln{e^2}$=π-1.

查看答案和解析>>

同步练习册答案