精英家教网 > 高中数学 > 题目详情
16.已知f(x)=$\left\{\begin{array}{l}{(\frac{1}{4})^{x},x∈(-∞,1)}\\{lo{g}_{\frac{1}{2}}x,x∈[1,+∞)}\end{array}\right.$,则f(f(-2))=-4.

分析 利用分段函数的性质求解.

解答 解:∵f(x)=$\left\{\begin{array}{l}{(\frac{1}{4})^{x},x∈(-∞,1)}\\{lo{g}_{\frac{1}{2}}x,x∈[1,+∞)}\end{array}\right.$,
∴f(-2)=$(\frac{1}{4})^{-2}$=16,
f(f(-2))=f(16)=$lo{g}_{\frac{1}{2}}16$=-4.
故答案为:-4.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意分段函数的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知f(x)=9x-2a•3x+3,x∈[-1,1].
(1)若f(x)的最小值记为h(a),求h(a)的解析式;
(2)是否存在实数m,n同时满足以下条件:
①log3m>log3n>1;
②当h(a)的定义域为[n,m]时,值域为[n2,m2].若存在,求出m,n的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知x>0,xy=4,则log2x•log2(4y)的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.半径为1的圆O,点P在圆外,点Q在线段OP上,满足|OP|•|OQ|=1,A为圆上一点,直线AP为圆O的切线,则$\overrightarrow{AP}$•$\overrightarrow{AQ}$的取值范围是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知复数z满足(2z+1)i=2,则z=(  )
A.-1-2iB.-$\frac{1}{2}$+iC.-$\frac{1}{2}$-iD.$\frac{1}{2}$-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.边长为2的正三角形ABC内(包括三边)有点P,$\overrightarrow{PB}$•$\overrightarrow{PC}$=1,求$\overrightarrow{AP}$•$\overrightarrow{AB}$的范围[$\frac{3-\sqrt{5}}{2}$,3-$\sqrt{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f(x)=$\left\{\begin{array}{l}{sinπx,x≤0}\\{2f(x-1),x>0}\end{array}\right.$,则f($\frac{4}{3}$)等于(  )
A.2B.-2C.2$\sqrt{3}$D.-2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在正方体ABCD-A1B1C1D1中,E、F分别是AB、B1C1的中点.
(1)求证:BD⊥平面ACC1A1
(2)求证:EF∥平面ACC1A1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在平面直角坐标系xOy中,不等式组$\left\{\begin{array}{l}x+y-3≤0\\ x-y≥0\\ y≥0\end{array}\right.$表示的平面区域内坐标为整数的点的个数是(  )
A.4B.5C.6D.7

查看答案和解析>>

同步练习册答案