精英家教网 > 高中数学 > 题目详情
8.实数x,y,z满足:x+y+z=9,xy+yz+xz=24,则$\frac{{x}^{2}+{y}^{2}}{z}$的取值范围是$[\frac{8}{5},32]$.

分析 x+y+z=9,xy+yz+xz=24,可得:x+y=9-z,xy=24-z(9-z)=24-9z+z2.因此x,y是一元二次方程t2-(9-z)t+24-9z+z2=0的两个实数根,利用△≥0.可得z的取值范围,则$\frac{{x}^{2}+{y}^{2}}{z}$=$\frac{(x+y)^{2}-2xy}{z}$=$\frac{33-{z}^{2}}{z}$,利用导数研究其单调性极值与最值即可得出.

解答 解:x+y+z=9,xy+yz+xz=24,
∴x+y=9-z,
xy=24-z(9-z)=24-9z+z2
∴x,y是一元二次方程t2-(9-z)t+24-9z+z2=0的两个实数根,
∴△=(9-z)2-4(24-9z+z2)≥0.
化为:z2-6z+5≤0,解得1≤z≤5.
则$\frac{{x}^{2}+{y}^{2}}{z}$=$\frac{(x+y)^{2}-2xy}{z}$=$\frac{(9-z)^{2}-2(24-9z+{z}^{2})}{z}$=$\frac{33-{z}^{2}}{z}$=f(z),
f′(z)=$-\frac{33}{{z}^{2}}$-1<0,
∴f(z)在[1,5]上单调递减,
∴f(z)∈$[\frac{8}{5},32]$.
故答案为:$[\frac{8}{5},32]$.

点评 本题考查了一元二次方程的根与系数的关系、利用导数研究函数的单调性极值与最值、不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.若x1,x2是方程4x2-4mx+(m-1)2+2=0的两个实根,则x${\;}_{1}^{2}$+x${\;}_{2}^{2}$的最小值为$\frac{9}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费,并将各地的销售收益绘制成频率分布直方图(如图所示),由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.
(1)根据频率分布直方图计算各小长方形的宽度;
(2)估计该公司投入4万元广告费之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值)
(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入x(单位:万元) 123 4 5
 销售收益y(单位:万元)2 3 2 7
表格中的数据显示,x与y之间存在线性相关关系,请将(2)的结果填入空白栏,并计算y关于x的回归方程.
回归直线的斜率和截距的最小二乘法估计公式分别为$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数y1=2sinx1(x1∈[0,2π]),函数y2=x2+$\sqrt{3}$,则(x1-x22+(y1-y22 的最小值为(  )
A.$\frac{(5π-6\sqrt{3})^{2}}{18}$B.$\frac{(5π+6\sqrt{3})^{2}}{18}$C.$\frac{{π}^{2}}{18}$D.$\frac{{π}^{2}}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设f(x)是定义在R上的奇函数,当x≥0时,f(x)=$\frac{1}{2}$(|x-$\frac{m}{3}}$|+|x-$\frac{2m}{3}}$|-m)(m>0),若对任意的实数x,都有f(x-1)≤f(x)成立,则m的最大值是0<m≤$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知实数a,b满足4a+b=ab,(a≥b>0),则a+b的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列命题中正确的是(  )
A.当x>0且x≠1时,lgx+$\frac{1}{lgx}$≥2
B.当x>0时,$\sqrt{x}$+$\frac{1}{\sqrt{x}}$≥2
C.当0<θ≤$\frac{π}{2}$时,sinθ+$\frac{2}{sinθ}$的最小值为2$\sqrt{2}$
D.当-$\frac{1}{2}$≤x<0时,x+$\frac{1}{x}$有最大值-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在三棱锥S-ABC中,已知SA=BC=2,SB=AC=$\sqrt{3}$,SC=AB=$\sqrt{5}$,则此三棱锥的外接球的表面积为(  )
A.B.2$\sqrt{6}$πC.D.12π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数y=asinx+bcosx+c的图象上有一个最低点(${\frac{11π}{6}$,1),如果图象上每点纵坐标不变,横坐标缩短到原来的$\frac{3}{π}$倍,然后向左平移1个单位长度可以得到y=f(x)的图象,则f(x)=(c-1)sin$\frac{π}{3}$x+c.

查看答案和解析>>

同步练习册答案