精英家教网 > 高中数学 > 题目详情
2.执行如图所示的程序框图,输出的S值为(  )
A.3B.4C.5D.6

分析 首先分析程序框图,循环体为“当型“循环结构,按照循环结构进行运算,求出满足题意时的S.

解答 解:模拟执行程序,可得
S=0,i=1
满足条件i<4,执行循环体,S=2,i=2
满足条件i<4,执行循环体,S=6,i=3
满足条件i<4,执行循环体,S=14,i=4
不满足条件i<4,S=4,输出S的值为4.
故选:B.

点评 本题为程序框图题,考查对循环结构的理解和认识,按照循环结构运算后得出结果.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.[A]已知数列{an}满足a4=20,an+1=2an-n+1(n∈N+).
(1)计算a1,a2,a3,根据计算结果,猜想an的表达式(不必证明);
(2)用数学归纳法证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.甲、乙、丙、丁和戊5名同学进行数学应用知识比赛,决出第1名至第5名(没有重复名次).已知甲、乙均未得到第1名,且乙不是最后一名,则5人的名次排列情况可能有(  )
A.27种B.48种C.54种D.72种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.甲、乙两人掷均匀硬币,其中甲掷m次,乙掷n次,掷出的正面次数依次记为x,y.
(Ⅰ)若m+n=10,记ξ=x+y,求P(ξ=k)的最大值:
(Ⅱ)若m=3,n=2,求x-y的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(0,1),若(k$\overrightarrow{a}+\overrightarrow{b}$)⊥(3$\overrightarrow{a}-\overrightarrow{b}$),则实数k=(  )
A.-3B.3C.-$\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,BC=1,且AC⊥BC,点D,E,F分别为AC,AB,A1C1的中点.
(Ⅰ)求证:A1D⊥平面ABC;
(Ⅱ)求证:EF∥平面BB1C1C;
(Ⅲ)写出四棱锥A1-BB1C1C的体积.(只写出结论,不需要说明理由)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.执行如图所示的程序框图,则下列说法正确的(  )
A.?a∈(2,4),输出的i的值为5B.?a∈(4,5),输出的i的值为5
C.?a∈(3,4),输出的i的值为5D.?a∈(2,4),输出的i的值为5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,已知直三棱柱ABC-A1B1C1的底面是边长为2的正三角形,E,F分别是AA1和CC1的中点,且BE⊥B1F.
(Ⅰ)求证B1F⊥平面BEC1
(Ⅱ)求三棱锥B1-BEC1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,在三棱锥P-ABC中,面PAC⊥面ABC,AB⊥BC,AB=BC=PA=PC=2,M,N为线段PC上的点,若MN=$\sqrt{2}$,则三棱锥A-MNB的体积为(  )
A.$\frac{2}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{2}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

同步练习册答案