精英家教网 > 高中数学 > 题目详情
12.[A]已知数列{an}满足a4=20,an+1=2an-n+1(n∈N+).
(1)计算a1,a2,a3,根据计算结果,猜想an的表达式(不必证明);
(2)用数学归纳法证明你的结论.

分析 (1)由a4=20,an+1=2an-n+1,可求得a1,a2,a3的值,从而可猜想{an}的一个通项公式.
(2)按照数学归纳法的证题步骤:先证明n=1时命题成立,再假设当n=k时结论成立,去证明当n=k+1时,结论也成立,从而得出命题an=2n+n对任意的正整数n恒成立.

解答 解:(1)∵an+1=2an-n+1,
∴an+1-(n+1)=2(an-n),
当n=3时,a4=2a3-3+1,解得a3=11,
当n=2时,a3=2a2-2+1,解得a2=6,
当n=1时,a2=2a1-1+1,解得a1=3,
可以猜想an=2n+n,
(2)下面用数学归纳法证明:an=2n+n,(n∈N+).
①当n=1时,a1=3,成立,
②假设n=k时成立,即ak=2k+k,
那么当n=k+1时,ak+1=2ak-k+1=2×2k+2k-k+1=2k+1+k+1,
所以当n=k+1时,猜想成立,
由①②可知,猜想成立,即an=2n+n.(n∈N+).

点评 本题考查数学归纳法,考查推理证明的能力,假设n=k(k∈N*)时命题成立,去证明则当n=k+1时,用上归纳假设是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.若不等式x2-ax+1≥0对一切x∈(0,1]恒成立,则a的取值范围是(-∞,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.己知两点A(-3,0)、B(3,0),动点M满足直线AM、BM的斜率之积为-$\frac{4}{9}$.动点M的轨迹为曲线C.
(1)求曲线C的方程;
(2)若∠AMB为钝角,求点M的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一个高为3的直三棱柱的俯视图是腰长为2的等腰直角三角形,如图所示,则此直三棱柱的俯视图为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知tanα=-$\frac{3}{4}$,且α∈(0,π).
(1)求sinα;
(2)求sin(-2π-α)-cos(π-α).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.用五种不同的颜色来涂如图所示的田字形区域,要求同一区域上用同一种颜色,相邻区域用不同的颜色(A与C、B与D不相邻).
(1)求恰好使用两种颜色完成涂色任务的概率;
(2)设甲、乙两人各自相互独立完成涂色任务,记他们所用颜色的种数差的绝对值为ξ,求ξ的分布列及数学期望E(ξ)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知△ABC的两个顶点A,B的坐标分别是(0,$\sqrt{3}$),(0,-$\sqrt{3}$),且AC,BC所在直线的斜率之积等于m(m≠0).
(1)求顶点C的轨迹M的方程,并判断轨迹M为何种曲线;
(2)当m=-$\frac{3}{4}$时,点P(1,t)为曲线M上点,且点P为第一象限点,过点P作两条直线与曲线M交于E,F两点,直线PE,PF斜率互为相反数,则直线EF斜率是否为定值,若是,求出定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{1}{x}$(x>0),对于正数x1,x2,…,xn(n∈N+),记Sn=x1+x2+…+xn,如图,由点(0,0),(xi,0),(xi,f(xi)),(0,f(xi))构成的矩形的周长为Ci(i=1,2,…,n),都满足Ci=4Si(i=1,2,…,n).
(Ⅰ)求x1
(Ⅱ)猜想xn的表达式(用n表示),并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.执行如图所示的程序框图,输出的S值为(  )
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案