精英家教网 > 高中数学 > 题目详情
10.若函数f(x)满足f(n2)=f(n)+2,n≥$\sqrt{2}$,且f(2)=1,求f(16)及f($\sqrt{2}$).

分析 依次令n=$\sqrt{2}$,2,4,即可求出.

解答 解:∵f(n2)=f(n)+2,
∴f(2)=f($\sqrt{2}$)+2=1,
∴f($\sqrt{2}$)=-1.
∵f(4)=f(2)+2=3,
∴f(16)=f(4)+2=5.

点评 本题考查了函数值的计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x-$\frac{a}{x}$(x>0)的图象经过点(2,1).
(1)求a的值;
(2)判断f(x)的单调性:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示,斜三棱柱ABC-A1B1C1中,点D,D1分别为AC,A1C1上的中点.
(1)证明AD1∥平面BDC1
(2)证明BD∥平面AB1D1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lnx-x.
(1)求函数g(x)=f(x)-x-2的图象在x=1处的切线方程;
(2)证明:|f(x)|>$\frac{lnx}{x}$+$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{15}}{4}$,F1,F2是椭圆的两个焦点,P是椭圆上任意一点,且PF1F2的周长是8+2$\sqrt{15}$.
(1)求椭圆C的方程;
(2)是否存在斜率为1的直线L与椭圆C交于A,B两点,使得以AB为直径圆过原点,若存在写出直线方程;
(3)设圆T:(x-t)2+y2=$\frac{4}{9}$,过椭圆的上顶点作圆T的两条切线交椭圆于E、F两点,当圆心在x轴上移动且t∈(1,3)时,求EF的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.$\underset{lim{n}^{2}}{n→∞}$[$\frac{100}{n}$-($\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{n+100}$)].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.画出函数y=x2-4|x|+3的图象,若该图象与y=b有4个交点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=lnx-mx(m∈R).
(I)若m=1,求曲线y=f(x)在点P(1,-1)处的切线方程;
(Ⅱ)讨论函数f(x)在(1,e)上的单调性,;
(Ⅲ)若曲线y=f(x)与x轴交于A(x1,0)、B(x2,0)两点,求证:x1x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,已知直线a∥平面α,在平面α内有一动点P,点A是定直线a上定点,且AP与a所成角为θ(θ为锐角),点A到平面α距离为d,则动点P的轨迹方程为(  )
A.tan2θx2+y2=d2B.tan2θx2-y2=d2C.${y^2}=2d(x-\frac{d}{tanθ})$D.${y^2}=-2d(x-\frac{d}{tanθ})$

查看答案和解析>>

同步练习册答案