精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=$\left\{\begin{array}{l}{-2,}&{x>0}\\{-{x}^{2}+bx+c,}&{x≤0}\end{array}\right.$,若f(0)=-2,f(-1)=1,则函数g(x)=f(x)+x的零点个数为3.

分析 由f(0)=-2,f(-1)=1联立可解出b=-4,c=-2;再讨论求方程g(x)=0的解,从而确定函数g(x)=f(x)+x的零点个数.

解答 解:∵f(x)=$\left\{\begin{array}{l}{-2,}&{x>0}\\{-{x}^{2}+bx+c,}&{x≤0}\end{array}\right.$,
∴f(0)=c=-2,f(-1)=-1-b+c=1;
解得,b=-4,c=-2;
∴当x>0时,
令g(x)=f(x)+x=-2+x=0解得,
x=2;
当x≤0时,
令g(x)=f(x)+x=-x2-4x-2+x=0解得,
x=-1或x=-2;
故方程g(x)=0有3个解,
故函数g(x)=f(x)+x的零点个数为3;
故答案为:3.

点评 本题考查了分段函数的应用及函数的零点与方程的根的关系应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知实数a是常数,f(x)=(x+a)2-3ln(x+1)-5,当x>0时,f(x)是增函数,求a的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若某市8所中学参加中学生合唱比赛的得分用茎叶图表示(如图),其中茎为十位数,
叶为个位数,则这组数据的中位数是(  )
A.91B.91.5C.92D.92.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知双曲线C的中心在原点,焦点在坐标轴上,P(1,2)是双曲线C上点,且y=$\sqrt{2}$x是C的一条渐近线,则C的方程为(  )
A.2x2-$\frac{{y}^{2}}{2}$=1B.$\frac{{y}^{2}}{2}$-x2=1
C.$\frac{{y}^{2}}{2}$-x2=1或2x2-$\frac{{y}^{2}}{2}$=1D.$\frac{{y}^{2}}{2}$-x2=1或x2-$\frac{{y}^{2}}{2}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.若函数f(x)=x2+2a|x-2|,数列{an}的前n项和为Sn,满足Sn=f(n).
(1)若数列{an}为递增数列,求实数a的取值范围;
(2)当a=$\frac{1}{2}$时,设数列{bn}满足:bn=2${\;}^{{a}_{n}}$,记{bn}的前n项和Tn,求满足不等式Tn>2015的最小整数n;
(3)当函数f(x)为偶函数时,对任意给定的k(k∈N*),是否存在自然数p,r(k<p<r)使$\frac{1}{{a}_{k}}$,$\frac{1}{{a}_{p}}$,$\frac{1}{{a}_{r}}$成等差数列?若不存在,说明理由;若存在,请找出p,r与k的一组关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在各项均为正数的等比数列{an}中,a1=2,且2a1,a3,3a2成等差数列.
(1)求等比数列{an}的通项公式;
(2)若数列{bn}满足bn=(n+2)log2an,求数列{$\frac{1}{{b}_{n}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等差数列{an}的各项均为正数,a1=1,且a3,a4+$\frac{5}{2}$,a11成等比数列.
(Ⅰ)求an的通项公式;
(Ⅱ)设bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知O是△ABC的重心,且满足$\frac{sinA}{3}$$\overrightarrow{OA}$+$\frac{sinB}{7}$$\overrightarrow{OB}$+$\frac{sinC}{8}$•$\overrightarrow{OC}$=0,则∠B=(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.一个几何体的俯视图是半径为l的圆,其主视图和侧视图如图所示,则该几何体的表面积为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案