精英家教网 > 高中数学 > 题目详情
11.如图所示,扇形AOB中,圆心角AOB的大小等于$\frac{π}{3}$,半径为2,在半径OA上有一动点C,过点C作平行于OB的直线交弧AB于点P.
(1)当OC=$\frac{2}{3}$时,求线段PC的长;
(2)设∠COP=θ,求△POC面积的最大值及此时θ的值.

分析 (1)由已知可得∠OCP=$\frac{2π}{3}$,OP=2,OC=$\frac{2}{3}$,利用余弦定理即可得9PC2+6PC-32=0,从而解得PC的值.
(2)由CP∥OP可求∠CPO=∠POB=$\frac{π}{3}$-θ,由正弦定理可求CP=$\frac{4}{{\sqrt{3}}}sinθ$,OC=$\frac{4}{{\sqrt{3}}}sin(\frac{π}{3}-θ)$,记△POC得面积为S(θ),则利用三角函数恒等变换的应用化简可得S(θ)=$\frac{1}{2}$CP•OC•$sin\frac{2π}{3}$=$\frac{{2\sqrt{3}}}{3}sin(2θ+\frac{π}{6})-\frac{{\sqrt{3}}}{3}$,利用正弦函数的图象和性质即可得解.

解答 解:(1)△POC中,∠OCP=$\frac{2π}{3}$,OP=2,OC=$\frac{2}{3}$,
由OP2=OC2+PC2-2OC•PCcos$\frac{2π}{3}$,…(2分)
∴9PC2+6PC-32=0,…(4分)
解得:PC=$\frac{\sqrt{33}-1}{3}$,…6分
(2)∵CP∥OP,∴∠CPO=∠POB=$\frac{π}{3}$-θ,
在△POC中,由正弦定理得$\frac{OP}{sin∠PCO}=\frac{CP}{sinθ}$,即$\frac{2}{{sin\frac{2π}{3}}}=\frac{CP}{sinθ}$.∴CP=$\frac{4}{{\sqrt{3}}}sinθ$,…(8分)
又$\frac{OC}{{sin(\frac{π}{3}-θ)}}=\frac{OP}{{sin\frac{2π}{3}}}$,∴OC=$\frac{4}{{\sqrt{3}}}sin(\frac{π}{3}-θ)$,…(10分)
记△POC得面积为S(θ),则
S(θ)=$\frac{1}{2}$CP•OC•$sin\frac{2π}{3}$=$\frac{1}{2}•\frac{{\sqrt{3}}}{2}•\frac{4}{{\sqrt{3}}}sinθ•\frac{4}{{\sqrt{3}}}sin(\frac{π}{3}-θ)$=$\frac{4}{{\sqrt{3}}}sinθsin(\frac{π}{3}-θ)$…(12分)
=$sin2θ+\frac{{\sqrt{3}}}{3}cos2θ-\frac{{\sqrt{3}}}{3}$=$\frac{{2\sqrt{3}}}{3}sin(2θ+\frac{π}{6})-\frac{{\sqrt{3}}}{3}$…(14分)
∴当θ=$\frac{π}{6}$时,S(θ)取得最大值$\frac{{\sqrt{3}}}{3}$.…(16分)

点评 本题主要考查了正弦定理,余弦定理,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,数形结合思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设函数f(x)定义在实数集上,f(1+x)=f(1-x),且当x≥1时,$f(x)={({\frac{1}{2}})^x}$,则有(  )
A.$f({\frac{1}{3}})<f(2)<f({\frac{1}{2}})$B.$f({\frac{1}{2}})<f(2)<f({\frac{1}{3}})$C.$f({\frac{1}{2}})<f({\frac{1}{3}})<f(2)$D.$f(2)<f({\frac{1}{3}})<f({\frac{1}{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若平面α外的直线l的方向向量为$\overrightarrow{a}$,平面α的法向量为$\overrightarrow{u}$,则能使l∥α的是(  )
A.$\overrightarrow{a}$=(1,-3,5),$\overrightarrow{u}$=(1,0,1)B.$\overrightarrow{a}$=(1,0,0),$\overrightarrow{u}$=(-2,0,0)
C.$\overrightarrow{a}$=(0,2,1),$\overrightarrow{u}$=(-1,0,1)D.$\overrightarrow{a}$=(1,-1,3),$\overrightarrow{u}$=(0,3,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知复数z=i(1+i),则|z|等于(  )
A.0B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.“x>0”是“x2+$\frac{1}{x^2}$≥2”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\left\{\begin{array}{l}\frac{x}{3},0≤x≤\frac{1}{2}\\ \frac{{2{x^3}}}{x+1},\frac{1}{2}<x≤1\end{array}$,若函数g(x)=ax-$\frac{a}{2}$+3(a>0),若对?x1∈[0,1],总?x2∈[0,$\frac{1}{2}$],使得f(x1)=g(x2)成立,则实数a的取值范围是(  )
A.(-∞,6]B.[6,+∞)C.(-∞,-4]D.[-4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.D是△ABC所在平面内一点,$\overrightarrow{AD}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$(λ,μ∈R),则λ+μ=1是点D在线段BC上的(  )
A.充分不必要条件B.必要不充分条件
C.充分且必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设Sn是等差数列{an}的前n项和,若S672=2,S1344=12,则S2016=(  )
A.22B.26C.30D.34

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若${∫}_{1}^{e}$$\frac{1}{x}$dx=a,则(1-x)3(1-$\frac{a}{x}$)3展开式中的常数项是20.

查看答案和解析>>

同步练习册答案