16£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}\frac{x}{3}£¬0¡Üx¡Ü\frac{1}{2}\\ \frac{{2{x^3}}}{x+1}£¬\frac{1}{2}£¼x¡Ü1\end{array}$£¬Èôº¯Êýg£¨x£©=ax-$\frac{a}{2}$+3£¨a£¾0£©£¬Èô¶Ô?x1¡Ê[0£¬1]£¬×Ü?x2¡Ê[0£¬$\frac{1}{2}$]£¬Ê¹µÃf£¨x1£©=g£¨x2£©³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬6]B£®[6£¬+¡Þ£©C£®£¨-¡Þ£¬-4]D£®[-4£¬+¡Þ£©

·ÖÎö º¯Êýf£¨x£©=$\left\{\begin{array}{l}\frac{x}{3}£¬0¡Üx¡Ü\frac{1}{2}\\ \frac{{2{x^3}}}{x+1}£¬\frac{1}{2}£¼x¡Ü1\end{array}$£¬µ±$0¡Üx¡Ü\frac{1}{2}$ʱ£¬f£¨x£©¡Ê$[0£¬\frac{1}{6}]$.$\frac{1}{2}£¼x¡Ü1$ʱ£¬f£¨x£©=$\frac{2{x}^{3}}{x+1}$£¬ÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐԿɵãºf£¨x£©¡Ê$£¨\frac{1}{6}£¬1]$£®¿ÉµÃ?x1¡Ê[0£¬1]£¬f£¨x1£©¡Ê[0£¬1]£®ÓÉÓÚº¯Êýg£¨x£©=ax-$\frac{a}{2}$+3£¨a£¾0£©ÔÚ[0£¬$\frac{1}{2}$]Éϵ¥µ÷µÝÔö£¬ÓÉÓÚ¶Ô?x1¡Ê[0£¬1]£¬×Ü?x2¡Ê[0£¬$\frac{1}{2}$]£¬Ê¹µÃf£¨x1£©=g£¨x2£©³ÉÁ¢£¬¿ÉµÃ[0£¬1]¡Ê{g£¨x£©|x¡Ê$[0£¬\frac{1}{2}]$}£¬¼´¿ÉµÃ³ö£®

½â´ð ½â£ºº¯Êýf£¨x£©=$\left\{\begin{array}{l}\frac{x}{3}£¬0¡Üx¡Ü\frac{1}{2}\\ \frac{{2{x^3}}}{x+1}£¬\frac{1}{2}£¼x¡Ü1\end{array}$£¬µ±$0¡Üx¡Ü\frac{1}{2}$ʱ£¬f£¨x£©¡Ê$[0£¬\frac{1}{6}]$£®
$\frac{1}{2}£¼x¡Ü1$ʱ£¬f£¨x£©=$\frac{2{x}^{3}}{x+1}$£¬f¡ä£¨x£©=$\frac{6{x}^{2}£¨x+1£©-2{x}^{3}}{£¨x+1£©^{2}}$=$\frac{2{x}^{2}£¨2x+3£©}{£¨x+1£©^{2}}$£¾0£¬¡àº¯Êýf£¨x£©ÔÚ$£¨\frac{1}{2}£¬1]$Éϵ¥µ÷µÝÔö£¬¡àf£¨x£©¡Ê$£¨\frac{1}{6}£¬1]$£®
¡à?x1¡Ê[0£¬1]£¬¡àf£¨x1£©¡Ê[0£¬1]£®
ÓÉÓÚº¯Êýg£¨x£©=ax-$\frac{a}{2}$+3£¨a£¾0£©ÔÚ[0£¬$\frac{1}{2}$]Éϵ¥µ÷µÝÔö£¬
Èô¶Ô?x1¡Ê[0£¬1]£¬×Ü?x2¡Ê[0£¬$\frac{1}{2}$]£¬Ê¹µÃf£¨x1£©=g£¨x2£©³ÉÁ¢£¬
¡à[0£¬1]¡Ê{g£¨x£©|x¡Ê$[0£¬\frac{1}{2}]$}£¬
¡à$\left\{\begin{array}{l}{g£¨0£©=3-\frac{1}{2}a¡Ü0}\\{g£¨\frac{1}{2}£©=\frac{1}{2}a-\frac{1}{2}a+3¡Ý1}\end{array}\right.$£¬½âµÃa¡Ý6£®
¹ÊÑ¡£ºB£®

µãÆÀ ±¾Ì⿼²éÁ˺¯ÊýµÄµ¥µ÷ÐÔÓëÖµÓò¡¢·ÖÀàÌÖÂÛ·½·¨¡¢¼òÒ×Âß¼­µÄÅж¨·½·¨¡¢ÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®¼ÆËãÓÉÇúÏßy2=xºÍÖ±Ïßy=x-2ËùΧ³ÉµÄͼÐεÄÃæ»ýÊÇ£¨¡¡¡¡£©
A£®$\frac{11}{2}$B£®18C£®$\frac{23}{6}$D£®$\frac{9}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Éè¡÷ABCµÄÄÚ½ÇA¡¢B¡¢CµÄ¶Ô±ß³¤·Ö±ðΪa¡¢b¡¢c£¬ÈôbsinB-csinC=a£¬ÇÒ¡÷ABCµÄÃæ»ýS=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{4}$£¬ÔòB=77.5¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªµÈ²îÊýÁÐ{an}Âú×ãa3=7£¬a5+a7=26£¬ÆäǰnÏîºÍΪSn£®
£¨¢ñ£©Çó{an}µÄͨÏʽ¼°Sn£»
£¨¢ò£©Áîbn=$\frac{1}{{{S_n}-n}}$£¨n¡ÊN*£©£¬ÇóÊýÁÐ{bn}µÄǰ8ÏîºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÈçͼËùʾ£¬ÉÈÐÎAOBÖУ¬Ô²ÐĽÇAOBµÄ´óСµÈÓÚ$\frac{¦Ð}{3}$£¬°ë¾¶Îª2£¬ÔÚ°ë¾¶OAÉÏÓÐÒ»¶¯µãC£¬¹ýµãC×÷ƽÐÐÓÚOBµÄÖ±Ïß½»»¡ABÓÚµãP£®
£¨1£©µ±OC=$\frac{2}{3}$ʱ£¬ÇóÏß¶ÎPCµÄ³¤£»
£¨2£©Éè¡ÏCOP=¦È£¬Çó¡÷POCÃæ»ýµÄ×î´óÖµ¼°´Ëʱ¦ÈµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®¸´Êýz=1+ai£¨a¡ÊR£©ÔÚ¸´Æ½Ãæ¶ÔÓ¦µÄµãÔÚµÚÒ»ÏóÏÞ£¬ÇÒ|$\overrightarrow{z}$|=$\sqrt{5}$£¬ÔòzµÄÐ鲿Ϊ£¨¡¡¡¡£©
A£®2B£®4C£®2iD£®4i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒԵ㣨1£¬0£©ÎªÔ²ÐÄ£¬ÇÒÓëÖ±Ïßx-y-3=0ÏàÇеÄÔ²µÄ±ê×¼·½³ÌΪ£¨x-1£©2+y2=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÒÑÖª£ºcos£¨${\frac{3¦Ð}{2}$+¦Á£©=$\frac{1}{3}$£¬ÆäÖЦÁ¡Ê£¨${\frac{¦Ð}{2}$£¬$\frac{3¦Ð}{2}}$£©£¬Ôòtan¦Á=$-\frac{{\sqrt{2}}}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªº¯Êýf£¨x£©=ax3+blnxÔڵ㣨1£¬0£©´¦µÄÇÐÏßµÄбÂÊΪ1£®
£¨1£©Çóa£¬bµÄÖµ£»
£¨2£©ÊÇ·ñ´æÔÚʵÊýtʹº¯ÊýF£¨x£©=f£¨x£©+lnxµÄͼÏóºãÔÚº¯Êýg£¨x£©=$\frac{t}{x}$µÄͼÏóµÄÉÏ·½£¬Èô´æÔÚ£¬Çó³ötµÄȡֵ·¶Î§£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸