| A. | $\frac{11}{2}$ | B. | 18 | C. | $\frac{23}{6}$ | D. | $\frac{9}{2}$ |
分析 先求出曲线y2=2x 和直线y=x-2的交点坐标,从而得到积分的上下限,然后利用定积分表示出图形面积,最后根据定积分的定义求出即可.
解答
解:联立方程组得$\left\{\begin{array}{l}{{y}^{2}=x}\\{y=x-2}\end{array}\right.$解得曲线y2=x和直线y=x-2的交点坐标为:(1,-1),(4,2),
选择y为积分变量,
∴由曲线y2=x和直线y=x-2所围成的图形的面积S=${∫}_{-1}^{2}$(y+2-y2)dy=$(\frac{1}{2}{y}^{2}+2y-\frac{1}{3}{y}^{3})$|${\;}_{-1}^{2}$=(2+4-$\frac{8}{3}$)-($\frac{1}{2}$-2+$\frac{1}{3}$)=$\frac{9}{2}$
点评 本题主要考查了定积分在求面积中的应用,以及会利用定积分求图形面积的能力.应用定积分求平面图形面积时,积分变量的选取是至关重要的,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x+y+1=0 | B. | x-y+1=0 | C. | x+2y+1=0 | D. | x+2y-1=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $f({\frac{1}{3}})<f(2)<f({\frac{1}{2}})$ | B. | $f({\frac{1}{2}})<f(2)<f({\frac{1}{3}})$ | C. | $f({\frac{1}{2}})<f({\frac{1}{3}})<f(2)$ | D. | $f(2)<f({\frac{1}{3}})<f({\frac{1}{2}})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30° | B. | 90° | C. | 60° | D. | 45° |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2014 | B. | 2015 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,6] | B. | [6,+∞) | C. | (-∞,-4] | D. | [-4,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com