| A. | $f({\frac{1}{3}})<f(2)<f({\frac{1}{2}})$ | B. | $f({\frac{1}{2}})<f(2)<f({\frac{1}{3}})$ | C. | $f({\frac{1}{2}})<f({\frac{1}{3}})<f(2)$ | D. | $f(2)<f({\frac{1}{3}})<f({\frac{1}{2}})$ |
分析 由f(1+x)=f(1-x),得函数f(x)关于x=1对称,根据函数的单调性判断函数的单调性,利用函数的单调性进行比较即可.
解答 解:由f(1+x)=f(1-x),得函数f(x)关于x=1对称,
当x≥1时,$f(x)={({\frac{1}{2}})^x}$,为减函数,
则当x≤1时,函数f(x)为增函数,
∵f(2)=f(1+1)=f(1-1)=f(0),
∴f(0)<f($\frac{1}{3}$)<f($\frac{1}{2}$),
即f(2)<f($\frac{1}{3}$)<f($\frac{1}{2}$),
故选:D.
点评 本题主要考查函数值的大小比较,根据条件判断函数的对称性,根据函数对称性和单调性的关系进行转化是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,-6) | B. | (0,7) | C. | (0,-6)或(0,7) | D. | (-6,0)或(7,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{11}{2}$ | B. | 18 | C. | $\frac{23}{6}$ | D. | $\frac{9}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com