精英家教网 > 高中数学 > 题目详情
1.设函数f(x)定义在实数集上,f(1+x)=f(1-x),且当x≥1时,$f(x)={({\frac{1}{2}})^x}$,则有(  )
A.$f({\frac{1}{3}})<f(2)<f({\frac{1}{2}})$B.$f({\frac{1}{2}})<f(2)<f({\frac{1}{3}})$C.$f({\frac{1}{2}})<f({\frac{1}{3}})<f(2)$D.$f(2)<f({\frac{1}{3}})<f({\frac{1}{2}})$

分析 由f(1+x)=f(1-x),得函数f(x)关于x=1对称,根据函数的单调性判断函数的单调性,利用函数的单调性进行比较即可.

解答 解:由f(1+x)=f(1-x),得函数f(x)关于x=1对称,
当x≥1时,$f(x)={({\frac{1}{2}})^x}$,为减函数,
则当x≤1时,函数f(x)为增函数,
∵f(2)=f(1+1)=f(1-1)=f(0),
∴f(0)<f($\frac{1}{3}$)<f($\frac{1}{2}$),
即f(2)<f($\frac{1}{3}$)<f($\frac{1}{2}$),
故选:D.

点评 本题主要考查函数值的大小比较,根据条件判断函数的对称性,根据函数对称性和单调性的关系进行转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知数列{an}满足a1=1,a2=$\frac{1}{2}$,且[3+(-1)n]an+2-2an+2[(-1)n-1]=0,求a3,a4,a5,a6的值及数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.甲、乙两人玩数字游戏,先由甲心中任想一个数字记为a,再由乙猜想甲刚才的数字,把乙想的数字记为b,且a、b∈{1、2、3、4、5},若a-b=0.则称“甲、乙志同道合“,现任意找两个人玩这个游戏,得出他们“志同道合”的概率为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知,点A(-2,-5),B(6,6),点P在y轴上,且∠APB=90°,则点P的坐标为(  )
A.(0,-6)B.(0,7)C.(0,-6)或(0,7)D.(-6,0)或(7,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.数列{an}中,a1=$\frac{1}{2}$,an+1=$\frac{n{a}_{n}}{(n+1)(n{a}_{n}+1)}$(n∈N+),则数列{an}的前2016项的和为$\frac{2016}{2017}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.计算由曲线y2=x和直线y=x-2所围成的图形的面积是(  )
A.$\frac{11}{2}$B.18C.$\frac{23}{6}$D.$\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.△ABC中,角A,B,C所对边分别为a,b,c,a=2,B=45°,①当b=$\sqrt{2}$时,三角形有1个解;②若三角形有两解,则b的取值范围是(2,2$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.对于函数f(x),若存在给定的实数对(a,b),对定义域中的任意实数x,都有f(a+x)•f(a-x)=b成立,则称函数f(x)为“Ψ函数”.
(Ⅰ)函数f(x)=ex是“Ψ函数”,求出所有实数对(a,b)满足的关系式,并写出两个实数对;
(Ⅱ)判断函数f(x)=sinx是否为“Ψ函数”,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示,扇形AOB中,圆心角AOB的大小等于$\frac{π}{3}$,半径为2,在半径OA上有一动点C,过点C作平行于OB的直线交弧AB于点P.
(1)当OC=$\frac{2}{3}$时,求线段PC的长;
(2)设∠COP=θ,求△POC面积的最大值及此时θ的值.

查看答案和解析>>

同步练习册答案