精英家教网 > 高中数学 > 题目详情
4.已知等差数列{an}满足a3=7,a5+a7=26,其前n项和为Sn
(Ⅰ)求{an}的通项公式及Sn
(Ⅱ)令bn=$\frac{1}{{{S_n}-n}}$(n∈N*),求数列{bn}的前8项和.

分析 (I)利用等差数列的通项公式及其前n项和公式即可得出;
(II)利用“裂项求和”方法即可得出.

解答 解:(Ⅰ)设等差数列{an} 的公差为d,由a5+a7=26,得a6=13,又a6-a3=3d=6,解得d=2.
∴an=a3+(n-3)d=7+2(n-3)=2n+1.
∴以${S_n}=\frac{{{a_1}+{a_n}}}{2}×n=\frac{3+2n+1}{2}×n={n^2}+2n$.
(Ⅱ)由${b_n}=\frac{1}{{{S_n}-n}}$,得${b_n}=\frac{1}{{{n^2}+n}}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$.
设{bn} 的前n 项和为Tn,则${T_8}=(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+(\frac{1}{3}-\frac{1}{4})+…+(\frac{1}{8}-\frac{1}{9})=1-\frac{1}{9}=\frac{8}{9}$.
故数列{bn} 的前8项和为$\frac{8}{9}$.

点评 本题考查了等差数列的通项公式及其前n项和公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知直线l经过点A(1,-2),B(-3,2),则直线l的方程是(  )
A.x+y+1=0B.x-y+1=0C.x+2y+1=0D.x+2y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)已知在极坐标系中,直线l过点(2,0)、倾斜角为$\frac{π}{6}$,求$M(2,\frac{π}{3})$到直线l的距离;
(2)已知直线和椭圆的参数方程分别是$\left\{\begin{array}{l}x=\frac{1}{2}+t\\ y=\frac{1}{2}-t\end{array}$(t∈R,t为参数),$\left\{\begin{array}{l}x=2cosθ\\ y=\sqrt{3}sinθ\end{array}$(θ为参数),判断直线与椭圆的位置关系,并说明理由,若相交求出相交弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在空间直角坐标系O-xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,0,0),(2,1,1),(0,1,1).若画该四面体三视图时,正视图以zOy平面为投影面,则得到的侧视图是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知复数z=i(1+i),则|z|等于(  )
A.0B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某地区人民法院每年要审理大量案件,去年审理的四类案件情况如表所示:
编号项目收案(件)结案(件)
 判决(件)
1刑事案件240024002400
2婚姻家庭、继承纠纷案件300029001200
3权属、侵权纠纷案件410040002000
4合同纠纷案件1400013000n
其中结案包括:法庭调解案件、撤诉案件、判决案件等.根据以上数据,回答下列问题.
(Ⅰ)在编号为1、2、3的收案案件中随机取1件,求该件是结案案件的概率;
(Ⅱ)在编号为2的结案案件中随机取1件,求该件是判决案件的概率;
(Ⅲ)在编号为1、2、3的三类案件中,判决案件数的平均数为$\overline x$,方差为S12,如果表中n=$\overline x$,表中全部(4类)案件的判决案件数的方差为S22,试判断S12与S22的大小关系,并写出你的结论(结论不要求证明).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\left\{\begin{array}{l}\frac{x}{3},0≤x≤\frac{1}{2}\\ \frac{{2{x^3}}}{x+1},\frac{1}{2}<x≤1\end{array}$,若函数g(x)=ax-$\frac{a}{2}$+3(a>0),若对?x1∈[0,1],总?x2∈[0,$\frac{1}{2}$],使得f(x1)=g(x2)成立,则实数a的取值范围是(  )
A.(-∞,6]B.[6,+∞)C.(-∞,-4]D.[-4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知向量$\overrightarrow{a}$=(ksinx,cosx),$\overrightarrow{b}$=($\sqrt{3}$cosx,-kcosx),k>0,函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$的最大值为1.
(Ⅰ)求k的值;
(Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c以f(A)=l,a=2,b+c=3,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若等比数列{an}的公比q满足|q|<1,且a2a4=4,a3+a4=3,则$\lim_{n→∞}$(a1+a2+…+an)=16.

查看答案和解析>>

同步练习册答案