分析 由等比数列通项公式列出方程组,求出首项和公比,由此能求出$\lim_{n→∞}$(a1+a2+…+an).
解答 解:∵等比数列{an}的公比q满足|q|<1,且a2a4=4,a3+a4=3,
∴$\left\{\begin{array}{l}{{a}_{1}q•{a}_{1}{q}^{3}=4}\\{{a}_{1}{q}^{2}+{a}_{1}{q}^{3}=3}\end{array}\right.$,
由|q|<1,解得${a}_{1}=8,q=\frac{1}{2}$,
a1+a2+…+an=$\frac{8(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$,
则$\lim_{n→∞}$(a1+a2+…+an)=$\underset{lim}{n→∞}\frac{8(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$=16.
故答案为:16.
点评 本题考查等比数列的前n项和的极限值的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=${x}^{\frac{1}{2}}$ | B. | f(x)=x3 | C. | f(x)=($\frac{1}{2}$)x | D. | f(x)=lo${g}_{\frac{1}{2}}$x |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com