精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=log2[ax2+(a-1)x+$\frac{1}{4}$].
(1)若定义域为R,求实数a的取值范围;
(2)若值域为R,求实数a的取值范围.

分析 (1)函数f(x)的定义域是使对数的真数有意义x的取值范围,故函数定义域为R等价于真数对应的二次函数取值恒大于零,由此不难列出根的判别式小于0,从而得到实数a的取值范围.
(2)函数f(x)的值域为R,说明对数的真数取到所有的正数,由此可得(0,+∞)包含于真数对应二次函数的值,由此可得根的判别大于或等于0,从而得到实数a的取值范围

解答 解:(1)若定义域为R,则ax2+(a-1)x+$\frac{1}{4}$>0恒成立,
则$\left\{\begin{array}{l}a>0\\△={(a-1)}^{2}-a<0\end{array}\right.$
得0<a<$\frac{3+\sqrt{13}}{2}$.------------------------------------------------------------(6分)
(2)若函数的值域是R,
则(0,+∞)包含于真数的取值范围,
∴a=0,或$\left\{\begin{array}{l}a>0\\△={(a-1)}^{2}-a≥0\end{array}\right.$
解得:a=0,或a≥$\frac{3+\sqrt{13}}{2}$.-------(12分)

点评 本题着重考查了对数型函数的定义域和值域、函数的图象与性质等知识点,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知直线l的参数方程为$\left\{\begin{array}{l}x=-4t+a\\ y=3t-1\end{array}\right.$(t为参数),在直角坐标系xOy中,以O点为极点,x轴的非负半轴为极轴,以相同的长度单位建立极坐标系,设圆M的方程为ρ2-6ρsinθ=-8.
(Ⅰ)求圆M的直角坐标方程;
(Ⅱ)若直线l截圆M所得弦长为$\sqrt{3}$,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在直角坐标系xOy中,点P为曲线C:x2+y2-2x-2y=0上一点,点M为线段OP中点,以坐标原点为极点,x轴非负半轴为极轴,建立极坐标系.
(Ⅰ)求点M轨迹E的极坐标方程;
(Ⅱ)直线l1:y=$\sqrt{3}$x,l2:y=$\frac{\sqrt{3}}{3}$x与轨迹E的交点分别为A,B,求△AOB的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求a的取值范围,使得函数y=log2[x2+(a-1)x+$\frac{9}{4}$]的定义域为全体实数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设A=$[\begin{array}{l}{-1}&{2}&{0}\\{5}&{2}&{-3}\\{0}&{1}&{1}\end{array}]$,写出-5A.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求下列函数的定义域:
(1)y=lg(sinx);
(2)y=$\sqrt{1-2si{n}^{2}x}$;
(3)y=lg(2sinx-1)+$\sqrt{64-{x}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.由曲线y=|x-1|与(x-1)2+y2=4所围成较小扇形的面积是(  )
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.πD.$\frac{3π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.圆x2+y2-4y=0被过原点且倾斜角为45°的直线所截得的弦长为(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.从某校参加高二年级学业水平考试模拟考试的学生中抽取60名学生,将其数学成绩分成6段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]后,画出如图的频率分布直方图.根据图形信息,解答下列问题:
(1)估计这次考试成绩的平均分;
(2)估计这次考试成绩的及格率和众数.

查看答案和解析>>

同步练习册答案