精英家教网 > 高中数学 > 题目详情
3.若双曲线mx2-y2=1经过抛物线y2=2x的焦点,则双曲线的离心率为$\sqrt{5}$.

分析 求出抛物线的焦点,代入双曲线的方程可得m=4,化为标准方程,可得a,b,c,进而得到双曲线的离心率.

解答 解:抛物线y2=2x的焦点为($\frac{1}{2}$,0),
双曲线mx2-y2=1(m>0)经过抛物线的焦点,可得m=4,
双曲线的方程即为$\frac{{x}^{2}}{\frac{1}{4}}$-y2=1,
可得a=$\frac{1}{2}$,b=1,c=$\sqrt{{a}^{2}+{b}^{2}}$=$\frac{\sqrt{5}}{2}$,
即有e=$\frac{c}{a}$=$\sqrt{5}$.
故答案为:$\sqrt{5}$.

点评 本题考查双曲线的离心率的求法,注意运用抛物线的焦点,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.若数列{an}满足:a1=0,且an=an-1+2n-1(n∈N*,n≥2),数列{bn}满足bn=$\sqrt{{a}_{n}+1}$•$\sqrt{{a}_{n+1}+1}$•($\frac{8}{11}$)n-1,则数列{bn}的最大项为第6项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在平面直角坐标系xOy中,与双曲线$\frac{x^2}{5}-\frac{y^2}{4}=1$有相同渐近线,且一条准线方程为$y=\frac{{4\sqrt{2}}}{3}$的双曲线的标准方程为$\frac{{y}^{2}}{8}$-$\frac{{x}^{2}}{10}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知△ABC中的内角A,B,C所对的边分别是a,b,c,若a=1,C-B=$\frac{π}{2}$,则c-b的取值范围是($\frac{\sqrt{2}}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.矩形ABCD中,AD=mAB,E为BC的中点,若$\overrightarrow{AE}⊥\overrightarrow{BD}$,则m=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.数列{an}满足a1=1,a2=7,令bn=an•an+1,{bn}是公比为q(q>0)的等比数列,设cn=a2n-1+a2n
(1)求证:${c_n}=8•{q^{n-1}},n∈N*$;
(2)设{cn}的前n项和为Sn,求$\lim_{n→∞}\frac{1}{S_n}$的值;
(3)设{cn}前n项积为Tn,当$q=\frac{1}{2}$时,求n为何值时,Tn取到最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.双曲线C:$\frac{{x}^{2}}{3}$-y2=1的左右顶点分别为A1,A2,点P在双曲线C上,且直线PA1的斜率的取值范围为[1,2],那么直线PA2的斜率的取值范围是(  )
A.[$\frac{1}{6}$,$\frac{1}{3}$]B.($\frac{1}{6}$,$\frac{1}{3}$)C.[-$\frac{1}{3}$,-$\frac{1}{6}$]D.(-$\frac{1}{3}$,-$\frac{1}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)的离心率为$\sqrt{2}$,则其渐近线方程为(  )
A.y=±$\sqrt{2}$xB.y=±xC.y=±$\frac{\sqrt{2}}{2}$xD.y=±$\frac{1}{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线方程为y=±$\frac{\sqrt{3}}{3}$x,则该双曲线的离心率为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

同步练习册答案