精英家教网 > 高中数学 > 题目详情
3.若数列{an}满足:a1=0,且an=an-1+2n-1(n∈N*,n≥2),数列{bn}满足bn=$\sqrt{{a}_{n}+1}$•$\sqrt{{a}_{n+1}+1}$•($\frac{8}{11}$)n-1,则数列{bn}的最大项为第6项.

分析 由已知数列递推式利用累加法求得数列{an}的通项公式,代入bn=$\sqrt{{a}_{n}+1}$•$\sqrt{{a}_{n+1}+1}$•($\frac{8}{11}$)n-1,整理后利用$\left\{\begin{array}{l}{{b}_{n}≥{b}_{n-1}}\\{{b}_{n}≥{b}_{n+1}}\end{array}\right.$求解关于n的不等式组得答案.

解答 解:由a1=0,且an=an-1+2n-1(n∈N*,n≥2),
得an-an-1=2n-1(n≥2),则
a2-a1=2×2-1,
a3-a2=2×3-1,
a4-a3=2×4-1,

an=an-1+2n-1(n≥2),
累加得:an=2(2+3+…+n)-(n-1)=$2×\frac{(n+2)(n-1)}{2}-n+1$=n2-1.
∴bn=$\sqrt{{a}_{n}+1}$•$\sqrt{{a}_{n+1}+1}$•($\frac{8}{11}$)n-1 =$\sqrt{{n}^{2}}•\sqrt{(n+1)^{2}}•(\frac{8}{11})^{n-1}$=$({n}^{2}+n)•(\frac{8}{11})^{n-1}$.
由$\left\{\begin{array}{l}{{b}_{n}≥{b}_{n-1}}\\{{b}_{n}≥{b}_{n+1}}\end{array}\right.$,得$\left\{\begin{array}{l}{({n}^{2}+n)•(\frac{8}{11})^{n-1}≥({n}^{2}-n)•(\frac{8}{11})^{n-2}}\\{({n}^{2}+n)•(\frac{8}{11})^{n-1}≥({n}^{2}+3n+2)•(\frac{8}{11})^{n}}\end{array}\right.$,
即$\frac{16}{3}≤n≤\frac{19}{3}$,
∵n∈N*,∴n=6.
∴数列{bn}的最大项为第6项.
故答案为:6.

点评 本题考查数列递推式,训练了累加法求数列的通项公式,根据条件建立不等式组是解决本题的关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知{an}是正项数列,a1=1,且点($\sqrt{a_n}$,an+1)在函数y=x2+1的图象上.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=1,bn+1=bn+2an,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)的定义域是R,对任意实数x,满足f(x+2)=-f(x),求证:函数f(x)是周期函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在半径为1的圆内任取一点P,则经过点P可作长度不小于1的弦的概率为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}{\sqrt{x-1},x≥1}\\{1,x<1}\end{array}\right.$,则f(5)=(  )
A.0B.1C.2D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.定义A⊕B={Z|z=xy(x+y),x∈A,y∈B},若A={x|x2-x=0},B={x|x2-3x+2=0}则A?B的子集个数为(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在等比数列{an}中,公比q>0,a1=3,S3=63,则公比q=4,S5=1023.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,△ABC是等腰直角三角形,AB=AC,∠BCD=90°,且BC=$\sqrt{3}$CD=3.将△ABC沿BC的边翻折,设点A在平面BCD上的射影为点M,若点M在△BCD内部(含边界),则点M的轨迹的最大长度等于$\frac{\sqrt{3}}{2}$;在翻折过程中,当点M位于线段BD上时,直线AB和CD所成的角的余弦值等于$\frac{\sqrt{6}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若双曲线mx2-y2=1经过抛物线y2=2x的焦点,则双曲线的离心率为$\sqrt{5}$.

查看答案和解析>>

同步练习册答案