分析 由已知数列递推式利用累加法求得数列{an}的通项公式,代入bn=$\sqrt{{a}_{n}+1}$•$\sqrt{{a}_{n+1}+1}$•($\frac{8}{11}$)n-1,整理后利用$\left\{\begin{array}{l}{{b}_{n}≥{b}_{n-1}}\\{{b}_{n}≥{b}_{n+1}}\end{array}\right.$求解关于n的不等式组得答案.
解答 解:由a1=0,且an=an-1+2n-1(n∈N*,n≥2),
得an-an-1=2n-1(n≥2),则
a2-a1=2×2-1,
a3-a2=2×3-1,
a4-a3=2×4-1,
…
an=an-1+2n-1(n≥2),
累加得:an=2(2+3+…+n)-(n-1)=$2×\frac{(n+2)(n-1)}{2}-n+1$=n2-1.
∴bn=$\sqrt{{a}_{n}+1}$•$\sqrt{{a}_{n+1}+1}$•($\frac{8}{11}$)n-1 =$\sqrt{{n}^{2}}•\sqrt{(n+1)^{2}}•(\frac{8}{11})^{n-1}$=$({n}^{2}+n)•(\frac{8}{11})^{n-1}$.
由$\left\{\begin{array}{l}{{b}_{n}≥{b}_{n-1}}\\{{b}_{n}≥{b}_{n+1}}\end{array}\right.$,得$\left\{\begin{array}{l}{({n}^{2}+n)•(\frac{8}{11})^{n-1}≥({n}^{2}-n)•(\frac{8}{11})^{n-2}}\\{({n}^{2}+n)•(\frac{8}{11})^{n-1}≥({n}^{2}+3n+2)•(\frac{8}{11})^{n}}\end{array}\right.$,
即$\frac{16}{3}≤n≤\frac{19}{3}$,
∵n∈N*,∴n=6.
∴数列{bn}的最大项为第6项.
故答案为:6.
点评 本题考查数列递推式,训练了累加法求数列的通项公式,根据条件建立不等式组是解决本题的关键,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 不存在 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 8 | D. | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com