精英家教网 > 高中数学 > 题目详情
13.设F1,F2分别为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦点,双曲线上存在一点P使得∠F1PF2=60°,|OP|=2b,(O为坐标原点),则该双曲线的离心率为(  )
A.$\frac{4}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{7}{6}$D.$\frac{{\sqrt{42}}}{6}$

分析 利用双曲线的定义与余弦定理可得到a2与c2的关系,从而可求得该双曲线的离心率.

解答 解:设该双曲线的离心率为e,依题意,||PF1|-|PF2||=2a,
∴|PF1|2+|PF2|2-2|PF1|•|PF2|=4a2
不妨设|PF1|2+|PF2|2=m,|PF1|•|PF2|=n,
上式为:m-2n=4a2,①
∵∠F1PF2=60°,
∴在△F1PF2中,
由余弦定理得,|F1F2|2=|PF1|2+|PF2|2-2|PF1|•|PF2|•cos60°=4c2,②
即m-n=4c2,②
又|OP|=3b,$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$=2$\overrightarrow{PO}$,
∴$\overrightarrow{P{F}_{1}}$2+$\overrightarrow{P{F}_{2}}$2+2|$\overrightarrow{P{F}_{1}}$|•|$\overrightarrow{P{F}_{2}}$|•cos60°=4|$\overrightarrow{PO}$|2=36b2
即|PF1|2+|PF2|2+|PF1|•|PF2|=36b2
即m+n=36b2,③
由②+③得:2m=4c2+36b2
①+③×2得:3m=4a2+72b2
于是有12c2+108b2=8a2+144b2
3c2=2a2+9b2=2a2+9c2-9a2
∴$\frac{{c}^{2}}{{a}^{2}}$=$\frac{7}{6}$,
∴e=$\frac{c}{a}$=$\frac{\sqrt{42}}{6}$.
故选:D.

点评 本题考查双曲线的定义与余弦定理的应用,得到a2与c2的关系是关键,也是难点,考查分析问题和解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知抛物线G的顶点在原点,焦点在y轴正半轴上,抛物线上的点P(m,4)到其焦点F的距离等于5.
(Ⅰ)求抛物线G的方程;
(Ⅱ)如图过抛物线焦点F的直线l与抛物线交于A、B
两点,与圆M:(x-1)2+(y-4)2=4交于C、D两点,若|AC|=|BD|,求三角形OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ax(lnx-1)-x2(a∈R)恰有两个极值点x1,x2,且x1<x2
(Ⅰ)求实数a的取值范围;
(Ⅱ)若不等式lnx1+λlnx2>1+λ恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-1,2),则($\overrightarrow{a}$+2$\overrightarrow{b}$)•$\overrightarrow{b}$=(  )
A.13B.-14C.14D.30

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.复数z=2-i(i是虚数单位)的虚部为(  )
A.-iB.iC.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,命题p:“B≠60°”,命题q:“△ABC不是等边三角形”,那么p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在各项均为正数的等比数列{an}中,am-1•am+1=2am(m≥2),数列{an}的前n项积为Tn,若T2m-1=512,则m的值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,动点S到点F(1,0)的距离与到直线x=2的距离的比值为$\frac{\sqrt{2}}{2}$
( I)求动点S的轨迹E的方程;
( II)过点F作与x轴不垂直的直线l交轨迹E于P,Q两点,在线段OF上是否存在点M(m,0),使得($\overrightarrow{MP}$+$\overrightarrow{MQ}$)•$\overrightarrow{PQ}$=0?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若直线2x+y+m=0过圆x2+y2-2x+4y=0的圆心,则m的值为0.

查看答案和解析>>

同步练习册答案