精英家教网 > 高中数学 > 题目详情
1.已知$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-1,2),则($\overrightarrow{a}$+2$\overrightarrow{b}$)•$\overrightarrow{b}$=(  )
A.13B.-14C.14D.30

分析 根据题意,由向量加法的坐标计算公式可得($\overrightarrow{a}$+2$\overrightarrow{b}$)的坐标,进而由向量数量积的坐标计算公式计算可得答案.

解答 解:根据题意,$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-1,2),
则($\overrightarrow{a}$+2$\overrightarrow{b}$)=(0,7),
($\overrightarrow{a}$+2$\overrightarrow{b}$)•$\overrightarrow{b}$=0×(-1)+2×7=14;
故选:C.

点评 本题考查向量的数量积的坐标计算,关键是掌握向量的数量积计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx-$\frac{1}{2}$ax2+(1-a)x+1,a∈R.
( I)求函数f(x)的单调区间;
(Ⅱ)令g(x)=f(x)+ax-$\frac{13}{2}$,若a=2,正实数x1,x2满足g(x1)+g(x2)+x1x2=0,求x1+x2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如果复数z=a2-a-2+(a+1)i为纯虚数,那么实数a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在梯形ABCD中,AB∥CD,∠BAD=$\frac{π}{2}$,M为BC中点,且AB=AD=2CD=2,则$\overrightarrow{AM}$•$\overrightarrow{BD}$的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知曲线C上任意一点M到点F(0,1)的距离比它到直线l:y=-2的距离小1.
(Ⅰ)求曲线C的方程;
(Ⅱ)斜率不为0且过点P(2,2)的直线m与曲线C交于A,B两点,设$\overrightarrow{AP}$=λ$\overrightarrow{PB}$,当△AOB的面积为4$\sqrt{2}$时(O为坐标原点),求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(2,1).求:
(1)|$\overrightarrow{a}$+3$\overrightarrow{b}$|;
(2)当k为何实数时,k$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$+3$\overrightarrow{b}$平行,平行时它们是同向还是反向?
(3)当向量k$\overrightarrow{a}$-$\overrightarrow{b}$与3$\overrightarrow{a}$-$\overrightarrow{b}$垂直时,求向量k$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{b}$的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设F1,F2分别为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦点,双曲线上存在一点P使得∠F1PF2=60°,|OP|=2b,(O为坐标原点),则该双曲线的离心率为(  )
A.$\frac{4}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{7}{6}$D.$\frac{{\sqrt{42}}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如果函数f(x)=ln(a-3x)的定义域为(-∞,2),则实数a=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆Γ:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$经过点$M({\sqrt{3},\frac{1}{2}})$,且离心率为$\frac{{\sqrt{3}}}{2}$.
(1)求椭圆Γ的方程;
(2)设点M在x轴上的射影为点N,过点N的直线l与椭圆Γ相交于A,B两点,且$\overrightarrow{NB}+3\overrightarrow{NA}$=0,求直线l的方程.

查看答案和解析>>

同步练习册答案