【题目】节约资源和保护环境是中国的基本国策.某化工企业,积极响应国家要求,探索改良工艺,使排放的废气中含有的污染物数量逐渐减少.已知改良工艺前所排放的废气中含有的污染物数量为
,首次改良后所排放的废气中含有的污染物数量为
.设改良工艺前所排放的废气中含有的污染物数量为
,首次改良工艺后所排放的废气中含有的污染物数量为
,则第n次改良后所排放的废气中的污染物数量
,可由函数模型
给出,其中n是指改良工艺的次数.
(1)试求改良后所排放的废气中含有的污染物数量的函数模型;
(2)依据国家环保要求,企业所排放的废气中含有的污染物数量不能超过
,试问至少进行多少次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标.
(参考数据:取
)
科目:高中数学 来源: 题型:
【题目】如图所示,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°,相距20海里的C处的乙船,现乙船朝北偏东
的方向即沿直线CB前往B处救援,则
等于 ( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知无穷数列
的前n项和为
,记
,
,…,
中奇数的个数为
.
(Ⅰ)若
= n,请写出数列
的前5项;
(Ⅱ)求证:"
为奇数,
(i = 2,3,4,...)为偶数”是“数列
是单调递增数列”的充分不必要条件;
(Ⅲ)若
,i=1, 2, 3,…,求数列
的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
,且函数
是偶函数.
(1)求
的解析式;.
(2)若不等式
在
上恒成立,求n的取值范围;
(3)若函数
恰好有三个零点,求k的值及该函数的零点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法错误的是
![]()
A. 棱柱的侧面都是平行四边形
B. 所有面都是三角形的多面体一定是三棱锥
C. 用一个平面去截正方体,截面图形可能是五边形
D. 将直角三角形绕其直角边所在直线旋转一周所得的几何体是圆锥
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知点E是正方形ABCD边AD的中点,现将△ABE沿BE所在直线翻折成到△A'BE,使A’C=BC,并连接A'C,A'D.
![]()
(1)求证:DE∥平面A'BC;
(2)求证:A'E⊥平面A'BC.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com