分析 (Ⅰ)由离心率为$\frac{\sqrt{2}}{2}$,可得a2=2b2,代入点(0,-1),可求解a,b的值,则椭圆方程可求;
(Ⅱ)设出直线方程,和椭圆联立后化为关于x的一元二次方程,由判别式大于0求出k的范围,利用根与系数关系得到A,B两点的横坐标的和与积,代入t•$\overrightarrow{ON}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$后得到P点的坐标,把P点坐标代入椭圆方程后得到t与k的关系,由k的范围确定t的范围,可得结论.
解答 解:(Ⅰ)由题知离心率为$\frac{\sqrt{2}}{2}$,所以a2=2b2.
又因为点P到椭圆C的一个焦点的最大距离等于$\sqrt{2}$+1,
所以a+c=$\sqrt{2}$+1,所以b2=1,a2=2.
故C的方程为$\frac{{x}^{2}}{2}+{y}^{2}$=1…(3分)
(Ⅱ)由题意知直线直线AB的斜率存在.
设AB方程为y=k(x-2),A(x1,y1),B(x2,y2),P(x,y),
由y=k(x-2)代入$\frac{{x}^{2}}{2}+{y}^{2}$=1,得(1+2k2)x2-8k2x+8k2-2=0.
△=64k2-4(2k2+1)(8k2-2)>0,
∴k2<$\frac{1}{2}$. …(5分)
x1+x2=$\frac{8{k}^{2}}{1+2{k}^{2}}$,x1x2=$\frac{8{k}^{2}-2}{1+2{k}^{2}}$,
∵t•$\overrightarrow{ON}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,∴(x1+x2,y1+y2)=t(x,y).
∴x=$\frac{8{k}^{2}}{t(1+2{k}^{2})}$,y=-$\frac{4k}{t(1+2{k}^{2})}$.…(8分)
∵点N在椭圆上,∴[$\frac{8{k}^{2}}{t(1+2{k}^{2})}$]2+2•[-$\frac{4k}{t(1+2{k}^{2})}$]=2,
∴16k2=t2(1+2k2),
∴t2=$\frac{16}{\frac{1}{{k}^{2}}+2}$<4,
∴-2<t<2.
∴整数t值为-1,0,1.…(12分)
点评 本题考查了椭圆的简单几何性质,考查了直线与圆锥曲线的关系,考查了平面向量的坐标运算,训练了利用代入法求解变量的取值范围.属中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1) | B. | (1,+∞) | C. | (e,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com