精英家教网 > 高中数学 > 题目详情
5.地铁三号线开通后,某地铁站人流量增大,小A瞄准商机在地铁口投资72万元购得某商铺使用权,且商铺最高使用年限为40年,现小A将该商铺出租,第一年租金为5.4万元,以后每年租金比上一年增加0.4万元,设商铺租出的时间为x(0<x≤40)年.
(1)求商铺租出x年后的租金总和y;
(2)若只考虑租金所得收益,则出租多长时间能收回成本;
(3)小A考虑在商铺出租x年后,将商铺的使用权转让,若商铺转让的价格F与出租的时间x满足关系式:F(x)=-0.3x2+10.56x+57.6,则何时转让商铺,能使小A投资此商铺所得年平均收益P(x)最大?

分析 (1)利用等差数列的求和公式,求商铺租出x年后的租金总和y;
(2)由0.2x2+5.2x≥72,可得结论;
(3)P(x)=(-0.3x2+10.56x+57.6+0.2x2+5.2x-72)÷x=-(0.1x+$\frac{14.4}{x}$)+15.76≤-2.4+15.76=13.36,即可得出结论.

解答 解:(1)第一年租金为5.4万元,以后每年租金比上一年增加0.4万元,
∴商铺租出x年后的租金总和y=5.4x+$\frac{x(x-1)}{2}×0.4$=0.2x2+5.2x(0<x≤40);
(2)由0.2x2+5.2x≥72,可得x≥10,即出租10年能收回成本;
(3)P(x)=(-0.3x2+10.56x+57.6+0.2x2+5.2x-72)÷x=-(0.1x+$\frac{14.4}{x}$)+15.76≤-2.4+15.76=13.36,
当且仅当0.1x=$\frac{14.4}{x}$,即x=12年,转让商铺,能使小A投资此商铺所得年平均收益P(x)最大.

点评 本题考查利用数学知识解决实际问题,考查基本不等式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,P是椭圆C上任意一点,且点P到椭圆C的一个焦点的最大距离等于$\sqrt{2}$+1
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆C相交于不同两点A,B,设N为椭圆上一点,是否存在整数t,使得t•$\overrightarrow{ON}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$(其中O为坐标原点)?若存在,试求整数t的所有取值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.执行如图的程序框图,已知输出的s∈[0,4].若输入的t∈[0,m],则实数m的最大值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,四边形ABCD是正方形,平面ABCD⊥平面ABEF,AF∥BE,AB⊥BE,AB=BE=2,AF=1.
(Ⅰ)求证:AC∥平面DEF;
(Ⅱ) 求证:平面BDE⊥平面DEF;
(Ⅲ)求直线BF和平面DEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数$f(x)=\sqrt{a{x^2}-2ax+1}$的定义域为R,则实数a的取值范围是[0,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图是一个四面体的三视图,三个正方形的边长均为2,则四面体外接球的体积为(  )
A.$\frac{\sqrt{3}}{2}π$B.4$\sqrt{3}$πC.$\frac{4\sqrt{3}}{3}$πD.8$\sqrt{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设数列{an}是公比为q的等比数列,且|q|>1.若数列{an}的连续四项构成集合{-72,-32,48,108},则2q的值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,AB=AC=1,$\overrightarrow{AM}$=$\overrightarrow{MB}$,$\overrightarrow{BN}$=$\overrightarrow{NC}$,$\overrightarrow{CM}$•$\overrightarrow{AN}$=-$\frac{1}{4}$,则∠ABC=(  )
A.$\frac{5π}{12}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.分别利用逆矩阵和行列式的知识解方程MX=N中的X=($\begin{array}{l}x\\ y\end{array}$),其中M=[$\begin{array}{l}{5}&{2}\\{4}&{1}\end{array}$],N=[$\begin{array}{l}{5}\\{8}\end{array}$]
(不按题目要求做不给分)
方法一:(逆矩阵法)
方法二:(行列式法)

查看答案和解析>>

同步练习册答案