精英家教网 > 高中数学 > 题目详情
16.执行如图的程序框图,已知输出的s∈[0,4].若输入的t∈[0,m],则实数m的最大值为(  )
A.1B.2C.3D.4

分析 根据流程图所示的顺序知:该程序的作用是计算一个分段函数的函数值,由条件t的取值范围得分段函数的分类标准,由分支结构中是否两条分支上对应的语句行,易得函数的解析式,从而得解.

解答 解:由s=4t-t2=-(t-2)2+4,
对称轴是t=2,t∈[0,m],s∈[0,4],
故s=4t-t2在[0,2)递增,在(2,m]递减,
故s(t)max=s(2)=4,s(t)min=s(0)=s(4)=0,
故m的最大值是4,
故选:D.

点评 本题考查了程序框图的应用问题,解题时应分析程序中各变量、各语句的作用,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.某高中有学生2000人,其中高一年级有760人,若从全校学生中随机抽出1人,抽到的学生是高二学生的概率为0.37,现采用分层抽(按年级分层)在全校抽取20人,则应在高三年级中抽取的人数为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.对函数f(x),如果存在x0≠0使得f(x0)=-f(-x0),则称(x0,f(x0))与(-x0,f(-x0))为函数图象的一组奇对称点.若f(x)=ex-a(e为自然数的底数)存在奇对称点,则实数a的取值范围是(  )
A.(-∞,1)B.(1,+∞)C.(e,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{2}=1(a>\sqrt{2})$的离心率为$\frac{{\sqrt{2}}}{2}$,点M,N是椭圆C上的点,且直线OM与ON的斜率之积为-$\frac{1}{2}$
(Ⅰ)求椭圆C的方程;
(Ⅱ)设动点P(x0,y0)满足$\overrightarrow{OP}$=$\overrightarrow{OM}$+2$\overrightarrow{ON}$,是否存在常数λ,使得P是椭圆$\frac{x^2}{a^2}+\frac{y^2}{2}=λ$上的点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=a+(bx-1)ex,(a,b∈R)
(1)如曲线y=f(x)在点(0,f(0))处的切线方程为y=x,求a,b的值;
(2)若a<1,b=2,关于x的不等式f(x)<ax的整数解有且只有一个,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知$\overrightarrow a=({1,-1}),\overrightarrow b=({t,1})$,若$({\overrightarrow a+\overrightarrow b})∥({\overrightarrow a-\overrightarrow b})$,则实数t=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知复数z满足(3+2i)z=13i,则z所对应的点位于复平面的第一象限.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.地铁三号线开通后,某地铁站人流量增大,小A瞄准商机在地铁口投资72万元购得某商铺使用权,且商铺最高使用年限为40年,现小A将该商铺出租,第一年租金为5.4万元,以后每年租金比上一年增加0.4万元,设商铺租出的时间为x(0<x≤40)年.
(1)求商铺租出x年后的租金总和y;
(2)若只考虑租金所得收益,则出租多长时间能收回成本;
(3)小A考虑在商铺出租x年后,将商铺的使用权转让,若商铺转让的价格F与出租的时间x满足关系式:F(x)=-0.3x2+10.56x+57.6,则何时转让商铺,能使小A投资此商铺所得年平均收益P(x)最大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\frac{|x|}{x+2}$,若关于x的方程f(x)=kx2有4个不同的实数解,则k的取值范围是(  )
A.k≥1B.k>1C.0<k<1D.0<k≤1

查看答案和解析>>

同步练习册答案