精英家教网 > 高中数学 > 题目详情
4.在四边形ABCD中,若$\overrightarrow{AB}$$•\overrightarrow{BC}$=$\overrightarrow{BC}$$•\overrightarrow{CD}$=$\overrightarrow{CD}$$•\overrightarrow{DA}$=$\overrightarrow{DA}$$•\overrightarrow{AB}$,则四边形ABCD的形状是(  )
A.矩形B.菱形C.平行四边形D.任意四边形

分析 把给出的向量等式变形,可得($\overrightarrow{AB}-\overrightarrow{CD}$)•$\overrightarrow{BC}$=0,($\overrightarrow{AB}-\overrightarrow{CD}$)•$\overrightarrow{DA}$=0,有$\overrightarrow{BC}$∥$\overrightarrow{AD}$,从而得到AD∥BC.同理可得AB∥CD.再由($\overrightarrow{AB}-\overrightarrow{CD}$)•$\overrightarrow{BC}$=0,$\overrightarrow{AB}$∥$\overrightarrow{CD}$,
得AB⊥BC,则四边形ABCD为矩形.

解答 解:由$\overrightarrow{AB}$$•\overrightarrow{BC}$=$\overrightarrow{BC}$$•\overrightarrow{CD}$=$\overrightarrow{CD}$$•\overrightarrow{DA}$=$\overrightarrow{DA}$$•\overrightarrow{AB}$,
得($\overrightarrow{AB}-\overrightarrow{CD}$)•$\overrightarrow{BC}$=0,($\overrightarrow{AB}-\overrightarrow{CD}$)•$\overrightarrow{DA}$=0,
∴$\overrightarrow{BC}$∥$\overrightarrow{AD}$,即AD∥BC.
同理有AB∥CD,则四边形ABCD为平行四边形,
又($\overrightarrow{AB}-\overrightarrow{CD}$)•$\overrightarrow{BC}$=0,$\overrightarrow{AB}$∥$\overrightarrow{CD}$,
∴AB⊥BC,则四边形ABCD为矩形.
故选:A.

点评 本题考查平面向量的数量积运算,考查了平面向量的加减法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.某学校高三年级有两个文科班,四个理科班,现每个班指定1人,对各班的卫生进行检查,若每班只安排一人检查,且文科班学生不检查文科班,理科班学生不检查自己所在的班,则不同安排方法的种数是(  )
A.48B.72C.84D.168

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设平行四边形的两邻边所在直线的方程是x+y=0和3x-y+4=0,且对角线的交点是O(3,3),求另两边所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设随机变量X~N(1,σ2),若P(0<x<1)=0.3,则P(0<x<2)=0.6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,$\frac{cosA}{cosB}$=$\frac{b}{a}$=$\frac{8}{5}$,则△ABC的形状为(  )
A.钝角三角形B.锐角三角形C.等腰三角形D.直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.(3x+ay)2(x+y)5的展开式中含有x2y5的项的系数为49,则实数a的值为1或-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知a>0,则5-2a-$\frac{8}{a}$的最大值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,已知双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左焦点为F,过F作斜率为1的直线交双曲线的渐近线于A,B两点,且|OB|=2|OA|,则该双曲线的离心率为$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}满足:a1=3,an+1=an2-nan+1.
(Ⅰ)求a2,a3,a4的值;
(Ⅱ)猜测an与n+2的关系,并用数学归纳法证明.

查看答案和解析>>

同步练习册答案