精英家教网 > 高中数学 > 题目详情
15.从某班的一次数学测验试卷中任意抽出10份,其得分情况如下:81、98、43、75、60、55、78、84、90、70,则这次测验调查的样本方差为252.84.

分析 根据平均数与方差的公式,利用计算器进行计算即可.

解答 解:数据81、98、43、75、60、55、78、84、90、70的平均数是
$\overline{x}$=$\frac{1}{10}$×(81+98+43+75+60+55+78+84+90+70)=73.4,
则这次测验调查的样本方差为
s2=$\frac{1}{10}$×[(81-73.4)2+(98-73.4)2+(43-73.4)2+(75-73.4)2
+(60-73.4)2+(55-73.4)2+(78-73.4)2+(84-73.4)2+(90-73.4)2+(70-73.4)2]
=252.84.
故答案为:252.84.

点评 本题考查了平均数与方差的计算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{\begin{array}{l}{2^x},(x<1)\\ f(x-1),(x≥1)\end{array}$,则f(log29)的值为(  )
A.9B.$\frac{9}{2}$C.$\frac{9}{4}$D.$\frac{9}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设a,b,c为三条不同的直线,α,β是两个不同的平面,则下列判断正确的是(  )
A.若a⊥b,b⊥c,则a⊥cB.若a∥α,b∥α,则a∥bC.若a∥α,b⊥α,则b∥αD.若a⊥α,α∥β,则a⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在数列{an}中.已知a1=2,an+1=$\frac{2{a}_{n}}{{a}_{n}+1}$.
(1)求证:{$\frac{1}{{a}_{n}}$-1}是等比数列
(2)若对任意n∈N+,an>m恒成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若△ABC的面积为64,边AB与AC的等比中项为12,则sinA=(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知实数x、y满足$\left\{\begin{array}{l}{x-y+2≥0}\\{x+2y+2≥0}\\{4x-y-10≤0}\end{array}\right.$,z=kx+y(k∈R)仅在(4,6)处取得最大值,则k的取值范围是(  )
A.k>1B.k>-1C.k<-$\frac{1}{2}$D.k<-4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,山顶上有一座电视塔,在塔顶B处测得地面上一点A的俯角α=60°,在塔底C处测得点A的俯角β=45°,已知塔高60m,则山高为30($\sqrt{3}$+1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{m\sqrt{x}+lnx}{x}$(x>0),m∈R,若函数f(x)的图象与x轴存在交点,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知三棱柱ABC-A1B1C1的侧棱垂直于底面,各顶点都在同一球面上,若该球的表面积为12π,AB=2,AC=1,∠BAC=60°,则此三棱柱的体积为$\sqrt{6}$.

查看答案和解析>>

同步练习册答案