分析 由已知结合bn=$\frac{{a}_{n+1}}{{a}_{n}}$,得到a101=b1b2…b100,结合b50b51=$201{6}^{\frac{1}{50}}$及等比数列的性质求得a101.
解答 解:由bn=$\frac{{a}_{n+1}}{{a}_{n}}$,且a1=1,得b1=$\frac{{a}_{2}}{{a}_{1}}={a}_{2}$.
b2=$\frac{{a}_{3}}{{a}_{2}}$,a3=a2b2=b1b2.
b3=$\frac{{a}_{4}}{{a}_{3}}$,a4=a3b3=b1b2b3.
…
an=b1b2…bn-1.
∴a101=b1b2…b100.
∵数列{bn}为等比数列,
∴a101=(b1b100)(b2b99)…(b50b51)=$({b}_{50}{b}_{51})^{50}=(201{6}^{\frac{1}{50}})^{50}=2016$,
故答案为:2016.
点评 本题考查了数列递推式,考查了等比数列的性质,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{9}\sqrt{3}$ | B. | -$\frac{\sqrt{6}}{9}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | -$\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | $\frac{1}{2}$ | C. | 1 | D. | $\frac{3}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com