精英家教网 > 高中数学 > 题目详情
15.已知0<a≠1,函数f(x)=3+$\frac{{a}^{x}-1}{{a}^{x}+1}$+xcosx(-1≤x≤1),设函数f(x)的最大值是M,最小值是N,则(  )
A.M+N=8B.M+N=6C.M-N=8D.M-N=6

分析 先将函数f(x)变形,再结合函数的单调性和奇偶性求出答案.

解答 解:∵f(x)=3+$\frac{{a}^{x}-1}{{a}^{x}+1}$+xcosx=4-$\frac{2}{{a}^{x}+1}$+xcosx,
令g(x)=xcosx,得g(x)是奇函数,最大值加最小值等于0,指数函数是单调函数,
因此f(x)的最大值加最小值=4+4-($\frac{2}{{a}^{-1}+1}$+$\frac{2}{a+1}$)=6,
故选:B.

点评 本题考查了函数的单调性、奇偶性问题,考查解题能力,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.函数f(x)=xlnx,g(x)=x3+ax2-x+2.
(1)若a=-1,求函数y=g(x)图象过点p(1,1)的切线方程;
(2)若?x0∈(0,+∞),使关于x的不等式2f(x)≥g′(x)+2成立,求实数a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示.
(1)请填写如表:
平均数方差中位数命中9环及9环以上的次数
     
 
(2)请从下列四个不同的角度对这次测试结果进行分析:
①从平均数和方差相结合看(谁的成绩更稳定);
②从折线图上两人射击命中环数的走势看(谁更有潜力).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若一个样本空间Ω={1,2,3,4,5,6},令事件A={2,3,5},B=(1,2,4,5,6),则P(B|A)=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.汽车年检必须对尾气的碳排放量进行环保检测,二氧化碳排放量超过130g/km的轻型汽车被认为是超标.检测单位对甲、乙两品牌轻型汽车各抽取5辆进行二氧化碳排放量检测,记录如下(单位:g/km).
 甲 80110  120140  150
 乙100  120 100160 
经测算乙品牌轻型汽车二氧化碳排放量的平均值为$\overline{{x}_{乙}}$=120g/km.
(1)从被检测的5辆甲品牌轻型汽车中任取2辆,求至少有一辆二氧化碳排放量超标的概率多少?
(2)求表中x的值,并比较甲、乙两品牌轻型汽车二氧化碳排放量的稳定性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知动圆P过定点A(-3,0),且与圆B:(x-3)2+y2=64相切,点P的轨迹为曲线C.设Q为曲线C上(不在x轴上)的动点,过点A作OQ的平行线交曲线C于M,N两点.
(1)求曲线C的方程;
(2)求△MNQ的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.三棱锥P-ABC中PA、PB、PC两两垂直,且PA=PB=PC=1.则下列结论中正确的是①PA⊥BC②△ABC为正三角形③体积为$\frac{1}{2}$④表面积为$\frac{{3+\sqrt{3}}}{2}$,将你认为正确的序号填上①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若实数x,y满足约束条件$\left\{\begin{array}{l}x≤4\\ x-y+3≥0\\ 2x+y-6≥0\end{array}\right.$,则$\frac{y}{x+1}$的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和${S_n}={n^2}-45n$.
(1)求数列的通项公式;
(2)求Sn的最值.

查看答案和解析>>

同步练习册答案